DOI QR코드

DOI QR Code

Preparation and Characterization of Tributyrin Sub-micron Emulsion as Carrier for Paclitaxel

  • Fei, Xiang (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Xu, Wenting (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Yue, Yuan (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Lee, Mi-Kyung (College of Pharmacy, Woosuk University)
  • Received : 2011.08.04
  • Accepted : 2011.10.19
  • Published : 2011.10.20

Abstract

Paclitaxel is a well known anticancer agent and has been a pharmaceutical challenge because of its extremely poor water-solubility and susceptibility to the p-glycoprotein (p-gp)-mediated efflux in multi-drug resistant (MDR) cancer cells. Tributyrin (TB), a triglyceride with relatively short fatty acid chains, was chosen as solubilizing vehicle for paclitaxel based on the solubility study (26.6 mg/mL). Tributyrin (10%) o/w emulsion containing paclitaxel (5%), egg phosphatidylcholine (5%) and pegylated phospholipid (0.5%) was prepared by high pressure homogenization to obtain submicron-sized emulsion. The mean particle size of the resultant TB emulsion was 395.5 nm. Paclitaxel in TB emulsion showed higher anticancer activity against human breast cancer cell line, MCF-7, than free form delivered in DMSO solution. On the other hand, its anticancer activity was significantly reduced in MCF-7/ADR, a MDR variant cancer cell line of MCF-7, and recovered by the presence of verapamil, suggesting of the susceptibility to the p-gp mediated efflux even though paclitaxel was encapsulated into emulsion. The TB emulsion showed great potential as a promising vehicle for water-insoluble anticancer agent, paclitaxel.

Keywords

References

  1. Agueros, M., Espuelas, S., Esparza, I., Calleja, P., Penuelas, I., Ponchel, G., Irache, J.M., 2011. Cyclodextrin-poly(anhydride) nanoparticles as new vehicles for oral drug delivery. Expert Opin. Drug Deliv. 8(6), 721-734. https://doi.org/10.1517/17425247.2011.572069
  2. Bates, S.E., Currier, S.J., Alvarez, M., Fojo, A.T., 1992. Modulation of P-glycoprotein phosphorylation and drug transport by sodium butyrate. Biochemistry 31(28), 6366-6372. https://doi.org/10.1021/bi00143a002
  3. Chavanpatil, M.D., Patil, Y., Panyam, J., 2006. Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Int. J. Pharm. 320(1-2), 150-156. https://doi.org/10.1016/j.ijpharm.2006.03.045
  4. Fang, Y.P., Lin, Y.K., Su, Y.H., Fang, J.Y., 2011. Tryptanthrinloaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: the effects of solid lipid/liquid lipid ratios in the inner core. Chem. Pharm. Bull. (Tokyo) 59(2), 266-271. https://doi.org/10.1248/cpb.59.266
  5. Frommel, T.O., Coon, J.S., Tsuruo, T., Roninson, I.B., 1993. Variable effects of sodium butyrate on the expression and function of the MDR1 (P-glycoprotein) gene in colon carcinoma cell lines. Int. J. Cancer 55(2), 297-302. https://doi.org/10.1002/ijc.2910550221
  6. Garcion, E., Lamprecht, A., Heurtault, B., Paillard, A., Aubert- Pouessel, A., Denizot, B., Menei, P., Benoit, J.P., 2006. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol. Cancer Ther. 5(7), 1710-1722. https://doi.org/10.1158/1535-7163.MCT-06-0289
  7. Hippalgaonkar, K., Majumdar, S., Kansara, V., 2011. Injectable lipid emulsions-advancements, opportunities and challenges. AAPS Pharm. Sci. Tech. 11(4), 1526-1540.
  8. Li, R., Eun, J.S., sLee, M.K., 2011. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. 34(2), 331-337. https://doi.org/10.1007/s12272-011-0220-2
  9. Marks, D.C., Davey, M.W., Davey, R.A., Kidman, A.D., 1995. Expression of multidrug resistance in response to differentiation in the K562 human leukaemia cell line. Biochem. Pharmacol. 50(4), 475-480. https://doi.org/10.1016/0006-2952(95)00157-U
  10. Massart, C., Poirier, C., Fergelot, P., Fardel, O., Gibassier, J., 2005. Effect of sodium butyrate on doxorubicin resistance and expression of multidrug resistance genes in thyroid carcinoma cells. Anticancer Drugs 16(3), 255-61. https://doi.org/10.1097/00001813-200503000-00004
  11. Mirtallo, J.M., Dasta, J.F., Kleinschmidt, K.C., Varon, J., 2011. State of the art review: Intravenous fat emulsions: Current applications, safety profile, and clinical implications. Ann. Pharmacother. 44(4), 688-700.
  12. Montana, M., Ducros, C., Verhaeghe, P., Terme, T., Vanelle, P., Rathelot, P., 2011. Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers. J. Chemother. 23(2), 59-66. https://doi.org/10.1179/joc.2011.23.2.59
  13. Ooi, C. C., Good, N. M., Williams, D. B., Lewanowitsch, T., Cosgrove, L. J., Lockett, T. J., Head, R. J., 2011. Efficacy of butyrate analogues in HT-29 cancer cells. Clin. Exp. Pharmacol. Physiol. 37(4), 482-489.
  14. Pandita, D., Ahuja, A., Lather, V., Benjamin, B., Dutta, T., Velpandian, T., Khar, R.K., 2011. Development of lipid-based nanoparticles for enhancing the oral bioavailability of Paclitaxel. AAPS Pharm. Sci. Tech. 12(2), 712-722. https://doi.org/10.1208/s12249-011-9636-8
  15. Parveen, S., Mitra, M., Krishnakumar, S., Sahoo, S.K., 2011. Enhanced antiproliferative activity of carboplatin-loaded chitosan- alginate nanoparticles in a retinoblastoma cell line. Acta Biomater. 6(8), 3120-3131.
  16. Shenoy, V.S., Gude, R.P., Murthy, R.S., 2009. Paclitaxel-loaded glyceryl palmitostearate nanoparticles: in vitro release and cytotoxic activity. J. Drug Target 17(4), 304-310. https://doi.org/10.1080/10611860902737938
  17. Shibata, H., Kanamaru, R., Sato, T., Ishioka, C., Konishi, Y., Ishikawa, A., Wakui, A., Tsuruo, T., 1990. Increase in the level of P-glycoprotein mRNA expression in multidrug-resistant K562 cell lines treated with sodium butyrate is not accompanied with erythroid differentiation. Jpn. J. Cancer Res. 81(12), 1214-1217. https://doi.org/10.1111/j.1349-7006.1990.tb02681.x
  18. Singh, S., Dash, A.K., 2009. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit. Rev. Ther. Drug Carrier Syst. 26(4), 333-372. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i4.10
  19. Sznitowska, M., Klunder, M., Placzek, M., 2008. Paclitaxel solubility in aqueous dispersions and mixed micellar solutions of lecithin. Chem. Pharm. Bull. (Tokyo) 56(1), 70-74. https://doi.org/10.1248/cpb.56.70
  20. Tarr, B.D., Sambandan, T.G., Yalkowsky, S.H., 1987. A new parenteral emulsion for the administration of taxol. Pharm. Res. 4(2), 162-165. https://doi.org/10.1023/A:1016483406511
  21. Wong, H.L., Bendayan, R., Rauth, A.M., Xue, H.Y., Babakhanian, K., Wu, X.Y., 2006. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 317(3), 1372-1381. https://doi.org/10.1124/jpet.106.101154
  22. Yin, H., Chow, G.M., 2009. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites. J. Biomed. Mater. Res. A 91(2), 331-341.
  23. Zhao, Y.X., Liang, W.Q., Wang, Y., Liu, D.X., 2011. Cationic submicron emulsions overcome multidrug resistance in SGC7901/VCR cells. Pharmazie 66(2), 130-135.

Cited by

  1. Cellular uptake and antitumour activity of paclitaxel incorporated into trilaurin-based solid lipid nanoparticles in ovarian cancer vol.30, pp.8, 2013, https://doi.org/10.3109/02652048.2013.788083