참고문헌
-
U. Abresch & W. Meyer, A sphere theorem with a pinching constant below
$\frac{1}{4}$ , J. Diff. Geom. 44(1996), 214-261. https://doi.org/10.4310/jdg/1214458972 - M. Anderson, Metrics of positive Ricci curvature with large diameter, Manu. Math. 68(1990), 405-415. https://doi.org/10.1007/BF02568774
- M. Berger, Les varietes Riemanniennes 1/4-pincees, Ann. Scuola Norm. Sup. Pisa 14(1960), 161-170.
- M. Berger, Sur les varietes riemanniennes pincees juste au-dessous de 1/4, Ann. Inst. Fourier(Grenoble) 33(1983), 135-150.
- S. Brendle & R. Schoen, Manifolds with 1/4-pinched curvature are space forms, J. of Amer. Math. Soc. 22(2009), 287-307.
- S. Y. Cheng, Eigenvalue comparision theorems and its geometric applications, Math. Z. 143(1975), 289-297. https://doi.org/10.1007/BF01214381
- T. Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124(1996), 193-214. https://doi.org/10.1007/s002220050050
- O. Durumeric, A generalization of Berger's theorem on almost 1/4-pinched manifolds II, J. Diff. Geom. 26(1987), 101-139. https://doi.org/10.4310/jdg/1214441178
- D. Gromoll, Differenzierbare Strukturen und Metriken positive Krummung auf Spharen, Math. Ann. 164(1966), 353-371. https://doi.org/10.1007/BF01350046
- D. Gromoll & W. Meyer, An exotic sphere with nonnegatively sectional curvature, Ann. of Math. 100(1974), 401-406. https://doi.org/10.2307/1971078
- K. Grove & K. Shiohama, A generalized sphere theorem, Ann. of Math. 106(1977) 201-211. https://doi.org/10.2307/1971164
- K. Grove & P. Petersen, A radius sphere theorem, Invent. Math. 112(1993), 577-583. https://doi.org/10.1007/BF01232447
- K. Grove & F. Wilhelm, Metric constraints on exotic spheres via Alexandrov geometry, J. Reine. Angew. Math. 487(1997), 201-217.
- H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95(1926), 313-339. https://doi.org/10.1007/BF01206614
- H. Im Hof & E. Ruh, An equivariant pinching theorem, Comment. Math. Helv. 50(1975), 389-401. https://doi.org/10.1007/BF02565758
- W. Klingenberg, Uber Riemannsche Mannigfaltigkeiten mit positiver Krummung, Comment. Math. Helv. 35(1961), 47-54. https://doi.org/10.1007/BF02567004
- M. J. Micallef & J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. 127(1988), 199-227. https://doi.org/10.2307/1971420
- S. B. Myers, Riemannian manifolds in the large, Duke. Math. J. 1(1935), 39-49. https://doi.org/10.1215/S0012-7094-35-00105-3
- S. B. Myers, Riemannian manifolds with positive mean curvature, Duke. Math. J. 8(1941), 401-404. https://doi.org/10.1215/S0012-7094-41-00832-3
- Y. Otsu, On manifolds of positive Ricci curvature with large diameter, Math. Z. 206(1991), 255-264. https://doi.org/10.1007/BF02571341
- G. Perelman, A diameter sphere theorem for manifolds of positive Ricci curvature, Math. Z. 218(1995), 595-596. https://doi.org/10.1007/BF02571925
- G. Perelman, Alexandrov's spaces with curvature bounded from below II, preprint.
- P. Petersen, Riemannian Geometry(2nd ed.), Graduate Texts in Mathematics 171, Springer-Verlarg, New York, 2006.
- P. Petersen & F. Wilhelm, An exotic sphere with positive sectional curvature, arXiv:Math/DG/0805.0812v3.
- H. Rauch, A contribution to differential geometry in the large, Ann. of Math. 54(1951), 38-55. https://doi.org/10.2307/1969309
- K. Shiohama & T. Yamaguch, Positively curved manifolds with restricted diameters, Perspectives in Math., Vol. 8: Geometry of Manifolds, ed. Shiohama K., Academic Press, Boston(1989), 345-350.
- M. Sugimoto, K. Shiohama, & H. Karcher, On the differentiable pinching problem, Math. Ann. 195(1971), 1-16. https://doi.org/10.1007/BF02059412
- Y. Suyama, A differentiable sphere theorem by curvature pinching, II, Tohoku Math. J. 47(1995), 15-29. https://doi.org/10.2748/tmj/1178225633
- V. A. Toponogov, Riemannian spaces with curvature bounded below, Uspekhi. Mat. Nauk 14(1959), 87-130.
- F. Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11(2001), 519-560. https://doi.org/10.1007/BF02922018
- B. Wilking, Nonnegatively and Positively Curved Manifolds, Surveys in differential geometry, Vol. XI: Metric and Comparison Geometry, ed. Grove K. and Cheeger, J. 7, Internat. Press(2007), 25-62.