DOI QR코드

DOI QR Code

Effect of Kenpaullone, a Specific Inhibitor of GSK3${\beta}$, on Melanin Synthesis in B16 Melanoma and Human Melanocytes

GSK3${\beta}$의 선택적 저해제인 Kenpaullone의 B16 멜라노마 및 인간 멜라노사이트에서의 영향

  • Kim, Hae-Jong (Department of Biological Engineering, National Research Lab of Skin Bioactive Material, Inha University) ;
  • Lee, You-Ree (Department of Biological Engineering, National Research Lab of Skin Bioactive Material, Inha University) ;
  • Nguyen, Dung Hoang (Department of Biological Engineering, National Research Lab of Skin Bioactive Material, Inha University) ;
  • Lee, Hyang-Bok (Department of Biological Engineering, National Research Lab of Skin Bioactive Material, Inha University) ;
  • Kim, Eun-Ki (Department of Biological Engineering, National Research Lab of Skin Bioactive Material, Inha University)
  • 김해종 (인하대학교 바이오피부신소재실험실) ;
  • 이유리 (인하대학교 바이오피부신소재실험실) ;
  • 호앙구엔 (인하대학교 바이오피부신소재실험실) ;
  • 이향복 (인하대학교 바이오피부신소재실험실) ;
  • 김은기 (인하대학교 바이오피부신소재실험실)
  • Received : 2011.06.20
  • Accepted : 2011.09.19
  • Published : 2011.09.30

Abstract

Effects of Kenpaullone, a specific inhibitor of GSK3${\beta}$, on melanin synthesis in B16 melanoma cells and human melanocytes were investigated. Kenpaullone showed a melanogenesis stimulation activity in a concentrationdependent manner in murine B16 melanoma cells and human melanocytes without any significant effects on cell proliferation. Tyrosinase activity was increased 48 h after treatment of B16 cells with Kenpaullone. The protein expression level of tyrosinase was dose-dependently enhanced after the treatment with Kenpaullone. At the same time, the expression level of tyrosinase mRNA was also increased after addition of Kenpaullone. The stimulatory effect of Kenpaullone mainly resulted from increased expression of tyrosinase. These findings suggest that the application of GSK3${\beta}$ inhibitors may be a potential therapeutic agent for the treatment of hypopigmentation disorder.

Glycogen synthase kinase 3 beta (GSK3${\beta}$)의 선택적 저해제인 Kenpaullone가 B16 멜라노마 및 사람의 멜라노사이트에 미치는 멜라닌 합성능을 조사하였다. Kepaullone은 B16 멜라노마 및 사람의 멜라노사이트에 대하여 세포증식에는 영향이 없는 범위 내에서 농도 의존적으로 멜라닌 합성을 촉진시켰다. B16 멜라노마 세포에 Kenpaullone을 첨가 48 h 후 tyrosinase 활성이 증가하였으며, 농도별 처리에 대하여 tyrosinase 단백질의 발현 및 tyrosinase mRNA양이 증가함을 관찰하였다. 결론적으로 Kenpaullone는 B16 멜라노마 세포에서 tyrosinase 효소의 발현을 증가시켜 멜라닌 합성을 촉진하는 것으로 판단되어진다. 따라서 GSK3${\beta}$ 저해제가 멜라닌 합성을 촉진시키는 결과는 백반증과 같은 저색소관련 질병의 치료제 개발의 가능성을 갖고 있는 소재로서 응용가능하리라고 판단되어진다.

Keywords

References

  1. A. Korner and J. Pawelek, Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin, Science, 217(4565), 1163 (1982). https://doi.org/10.1126/science.6810464
  2. S. C. Taylor, Skin of color: biology, structure, function, and implications for dermatologic disease, J. Am. Acad. Dermatol., 46, S41 (2002). https://doi.org/10.1067/mjd.2002.120790
  3. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals. FASEBJ, 5(14), 2902 (1991). https://doi.org/10.1096/fasebj.5.14.1752358
  4. I. J. Jackson, D. M. Chambers, K. Tsukamoto, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, and V. J. Hearing, A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus, EMBO J., 11(2), 527 (1992).
  5. K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, S. Nishiyama, K. Urabe, and V. J. Hearing, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPAchrome tautomerase (TRP2), and a melanogenic inhibitor, J. Invest. Dermatol., 100(2), 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
  6. P. Aroca, F. Solano, C. Salinas, J. C. Garcia-Borron, and J. A. Lozano, Regulation of the final phase of mammalian melanogenesis: The role of dopachrome tautomerase and the ratio between 5,6-dihydroxyindole- 2-carboxylic acid and 5,6-dihydroxyindole, Eur. J. Biochem., 208(1), 155 (1992). https://doi.org/10.1111/j.1432-1033.1992.tb17169.x
  7. A. Arrunátegui, C. Arroyo, L. Garcia, C. Covelli, C. Escobar, E. Carrascal, and R. Falabella, Melanocyte reservoir in vitiligo, Int. J. Dermatol., 33(7), 484 (1992).
  8. P. Manga, D. Sheyn, F. Yang, R. Sarangarajan, and R. E. Boissy. A role for tyrosinase-related protein1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo, Am. J. Pathol., 169(5), 1652 (2006). https://doi.org/10.2353/ajpath.2006.050769
  9. A. B. Lerner, On the etiology of vitiligo and gray hair, Am. J. Med., 51(2), 141 (1971). https://doi.org/10.1016/0002-9343(71)90232-4
  10. J. J. Nordlund, The pigmentary system and inflammation, Pigment. Cell. Res., 5(5), 362 (1992). https://doi.org/10.1111/j.1600-0749.1992.tb00563.x
  11. W. Englaro, R. Rezzonico, M. Durand-Clement, D. Lallemand, J. P. Ortonne, and R. Ballotti, Mitogenactivated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B16 melanomacells, J. Biol. Chem., 270(41), 24315 (1995). https://doi.org/10.1074/jbc.270.41.24315
  12. J. Lee, E. Jung, J. Park, K. Jung, E. Park, J. Kim, S. Hong, J. Park, S. Park, S. Lee, and D. Park, Glycyrrhizin induces melanogenesis by elevating a cAMP level in B16 melanoma cells, J. Invest. Dermatol., 124(2), 405 (2005). https://doi.org/10.1111/j.0022-202X.2004.23606.x
  13. S. K. Singh, C. Sarkar, S. Mallick, B. Saha, R. Bera, and R. Bhadra, Human placental lipid induces melanogenesis through p38 MAPK in B16F10 mouse melanoma, Pigment.Cell. Res., 18(2), 113 (2005). https://doi.org/10.1111/j.1600-0749.2005.00219.x
  14. R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment. Cell. Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
  15. L. Brault, E. Migianu, A. Nelquesque, E. Battaaglia, D. Bagrel, and G. Kirsch, New thiophene analogues of kenpaullone: synthesis and biological evaluation in breast cancer cells, Eur. J. Med. Chem., 40(8), 757 (2005). https://doi.org/10.1016/j.ejmech.2005.02.010
  16. V. J. Hearing, Mammalian monophenol monooxygenase (tyrosinase): purification, properties, and reactions catalyzed, Method. Enzymol., 142, 154 (1987).
  17. M. Khaled, L. Larribere, K. Bille, E. Aberdam, J. P. Ortonne, R. Ballotti, and C. Bertolotto, Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis, J. Biol. Chem., 277(37), 33690 (2002). https://doi.org/10.1074/jbc.M202939200
  18. H. J. Park, Y. J. Kim, K. Leem, S. J. Park, J. C. Seo, H. K. Kim, and J. H. Chung, Coptis japonica root extract induces apoptosis through caspase3 activation in SNU-668 human gastric cancer cells, Phytother. Res., 19(3), 189 (2005). https://doi.org/10.1002/ptr.1539
  19. A. E. Hughes, V. E. Newton, X. Z. Liu, and A. P. Read, A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1, Nat. Genet., 7(4), 509 (1994). https://doi.org/10.1038/ng0894-509
  20. M. Tassagehji, V. E. Newton, and A. P. Read, Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene, Nat. Genet., 8(3), 251 (1994). https://doi.org/10.1038/ng1194-251
  21. B. Bellei, E. Flori, E. Izzo, V. Maresca, and M. Picardo, GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes, Cell. Signal., 20(10), 1750 (2008). https://doi.org/10.1016/j.cellsig.2008.06.001
  22. K. Takeda, C. Takemoto, I. Kobayashi, A. Watanabe, Y. Nobukuni, D. E. Fisher, and M. Tachibana, Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance, Hum. Mol. Genet. 9(1), 125 (2000). https://doi.org/10.1093/hmg/9.1.125
  23. V. J. Hearing, Biochemical control of melanogenesis and melanosomal organization, J. Investig. Dermatol. Symp. Proc., 4(1), 24 (1999). https://doi.org/10.1038/sj.jidsp.5640176
  24. V. Del Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996). https://doi.org/10.1016/0014-5793(96)00109-3
  25. S. B. Levy, Dihydroxyacetone-containing sunless or self-tanning lotions, J. Am. Acad. Dermatol., 27(6), 989 (1992). https://doi.org/10.1016/0190-9622(92)70300-5