Kinetic and Thermodynamic Analysis of AChE Inhibition of Solvent Extract Fractions from Inonotus obliquus

차가버섯 용매추출분획의 Acetylcholinesterase 저해활성에 대한 동역학 및 열역학적 해석

  • Kim, Hak-Kyu (Korea Accelerator and Plasma Research Assoiation) ;
  • Hur, Won (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hong, Eok Kee (Department of Bioengineering and Technology, Kangwon National University) ;
  • Lee, Shin-Young (Department of Bioengineering and Technology, Kangwon National University)
  • 김학규 ((사)한국가속기 및 플라스마연구협회) ;
  • 허원 (강원대학교 생물공학과) ;
  • 홍억기 (강원대학교 생물공학과) ;
  • 이신영 (강원대학교 생물공학과)
  • Received : 2011.05.30
  • Accepted : 2011.09.08
  • Published : 2011.11.30

Abstract

Twenty four fractions by solvent extraction and/or acid precipitation from fruit body and culture broth of Inonotus obliquus were prepared, and their inhibitory effect against acetylcholinesterase (AChE) was investigated. Among these fractions, acid (1 M HCl) precipitates from cell-free culture broth and fruit body exhibited the highest inhibitory effect on AChE in vitro. Acid precipitates inhibited AChE activity in a concentration-dependant manner and $IC_{50}$ values of both acid precipitates were 0.53 mg/mL. The inhibition pattern was general non-competitive inhibition. The energetic parameters were also determined by dual substrate/temperature design. Both acid precipitates increased the values of Ea, ${\Delta}H,/;{\Delta}G$ and ${\Delta}H^{\ast}$ decreasing the value of ${\Delta}S$ for AChE. The results implied that the acid precipitates from I. obliquus increased the thermodynamic barrier, leading to the breakdown of ES complex and the formation of products as inhibitory mechanism.

Keywords

References

  1. Al-Jafari AA, Kamal MA, Alhomida AS. 1997. Thermodynamic investigation of camel retina acethylcholinesterase inhibition by cyclophosphamide. J. Enz. Inhibit. 11: 275-283. https://doi.org/10.3109/14756369709027656
  2. Bray HG, Thrope WV. 1954. Analysis of phenolic compounds of interest in metabolism. In: Method in Biochemicl Analysis (D. Glich ed.), John Wiely, New York, USA.
  3. Bruhlmann C, Marston A, Hostettmann K, Carrupt PA, Testa B. 2004. Screening of non-alkaloidal natural compounds as acetylcholinesterase inhibitors. Chem. Biodivers. 1: 819-829. https://doi.org/10.1002/cbdv.200490064
  4. Cummings JL. 2000. Cholinesterase inhibitors: A new class of psychotropic compounds. Am. J. Psychiatry 157(1): 4-15.
  5. Doulgeraki A, Papadoulou DZ, Tsakiris S. 2002. Effects of Lphenylalanine on acetylcholinesterase and $Na^{+}$, $K^{+}$-ATPase activities in suckling rat frontal cortex, hypovampus and hyposalamus. Verlag, der Zeitshrift, fur Naturforschung. Tubingen 57: 182-185.
  6. Dunbar F, Zhu Y, Brashear HR. 2006. Post hoc comparison of daily rates of nausea and vomitting with once-and twice daily galantamine from a double-blind, placebo-controlled, parallel-group, 6-momth study. Clin. Ther. 28: 365-372. https://doi.org/10.1016/j.clinthera.2006.03.002
  7. Ellman GL, Courtney KD, Andres Jr, Freatherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Phamachol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  8. Ezio GL. 1998. Cholinesterase inhibitors for Alzheimer disease theraphy: from tacrine future application. Neurochem. Int. 32: 413-419. https://doi.org/10.1016/S0197-0186(97)00124-1
  9. Giacobini E. 1997. From molecular structure to Alzheimer theraphy. Jpn. J. Phamacol. 74: 225-241.
  10. Heo HJ, Hong SC, Cho HY, Hong BS, Kim HK, Kim EK, Shin DH. 2002. Inhibitory effect of zeatin, isolated from Fiatoua villosa on acetylcholinesterase activity from PC12 cells. Mol. Cells 13: 113-117.
  11. Ji HF, HY Zhang. 2008. Multipotent natural agents to combat Alzheimer's disease. Functional spectrum and structural features. Acta Pharmacol. Sin. 29(2): 143-151. https://doi.org/10.1111/j.1745-7254.2008.00752.x
  12. Jung JH, Lee SY. 2007. AChE inhibitory effect and antioxidative activity of submerged cultured products from Hericium erinaceum. Korean J. Biotechnol. Bioeng. 22(1): 30-36.
  13. Kahlos K, Kangas L, Hiltunem R. 1986. Antitumor tests of inotodiol from the fungus Inonotus obliquus. Acta' Phamaceutica Fennica 95:173-177.
  14. Kamal MA. 1997. Dual temperature model for the estimation of energetics parameters for acethylcholinesterase inhibition by cyclophosphamide. Biochem. Mol. Biol. Int. 43(3): 571-581.
  15. Kamal MA, Aihomida AS, Al-Rajhi AA, Al-Jafari AA. 2000. Thermodynamic analysis of human retinal acetylcholinesterase inhibition using an anti-Alzheimer's drug, tacrine, through the development of a dual substrate and temperature model. Proc. Natl. Sci. Counc. 3:108-115.
  16. Kazuo S. 2003. Preventive and therapeutic agents for microbe-related syndromes including HIV. US patent NO. 0030161841.
  17. Kawagishi H, Ando M, Shinba K, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Ukai N, Furukawa S. 1993. Chromans, hericenones F, G and H from the mushroom Hericium erinaceum. Phytochem. 32: 175-178.
  18. Kawagishi H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, Ishiguro Y, Furukawa S. 1994. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 35: 1569-1572. https://doi.org/10.1016/S0040-4039(00)76760-8
  19. Kawagishi H, Simada A, Shizuki K, Mori H, Sakamoto H, Furukawa S. 1996. Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 41: 7399-7402.
  20. Mukherjee PK, Kumar V, Mal M, Houghton PJ. 2007. Acethylcholinesterase inhibitors from plants. Phytomedicine 14: 289-300. https://doi.org/10.1016/j.phymed.2007.02.002
  21. Nordmeyer D, Dickson DW. 1991. Biological activity and acetylchol inesterase inhibition by nonfumigant nematicides and their degradation products on Meloidogyne incognita, Revue Nematol. 14: 517-524.
  22. Rao MS, Dasgupta DR. 1991. Purification of the enzyme acetylcholinesterase (AChE. 3.1.1.7) from the Meloidogyne incogtia and Heterodera zeae. Revue Nematol. 14(4): 517-524.
  23. Stepankova S, Komers K. 2008. Cholinesterases and cholinesterase Inhibitors. Current Enzyme Inhibition 4: 160-171. https://doi.org/10.2174/157340808786733631
  24. Tsakiris S, Schulpis KH. 2003. Alanine reverses inhibitory effect of phenylalanine on acetylcholinesterase activity. Z. Naturforsch. 57: 506-511.
  25. Wetwitayaklung P, Limmatvapirat C, Phacechamud T, Keokitichai S. 2007. Kinetics of acetylcholinesterase inhibition of Quisqualis indica Linn. flower extract. Silpakorn Univ. Sci. Tech. J. 1(2): 20-28.
  26. Wolf-Klein G, Pekmezaris R, Chin L, Weiner J. 2007. Conceptualizing Alzheimer's disease as a terminal medical illness. Am. J. Hosp. Palliat. Care 24: 77-82 https://doi.org/10.1177/1049909106295297
  27. Zheng W, Zhang M, Zhao Y, Wang Y, Miao K, Wei Z. 2009. Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresource Technol. 100: 1327-1335. https://doi.org/10.1016/j.biortech.2008.05.002
  28. Zdrazilova P, Stepankova S, Komersova A, Vranova M, Komers K, Cegan A. 2006. Kinetics of 13 new cholinesterase inhibitors. Z. Naturforsch 61c: 611-617.