DOI QR코드

DOI QR Code

Radiocarbon for Studies of Organic Matter Cycling in the Ocean

방사성탄소를 이용한 해양 유기탄소 순환 연구 동향

  • 황점식 (포항공과대학교 해양대학원)
  • Received : 2012.04.10
  • Accepted : 2012.05.29
  • Published : 2012.08.31

Abstract

Radiocarbon is a powerful tool for studies of carbon cycling in the ocean. Development of measurement technology of accelerator mass spectrometry has enabled researchers to measure radiocarbon even in specific compounds. In this paper, a brief introduction on radiocarbon measurement and reporting of radiocarbon data is provided. Researches that used radiocarbon measurements on bulk organic matter, organic compound classes, and specific organic compounds are reviewed. Examples include works to understand the cycling of particulate and dissolved organic matter, biochemical composition of particulate organic matter, post-depositional transport of sedimentary organic matter, selective incorporation of fresh organic matter by benthic organisms, chemoautotrophy by archaea, and sources of halogenated chemical compounds found in marine mammals.

방사성탄소동위원소는 해양의 탄소순환을 이해하는 데 유용한 도구이다. 현재 가속질량분석기를 이용한 분석 기술의 발달로 유기물전체 뿐만 아니라 특정 유기화합물에서도 방사성탄소 분석이 이루어지고 있다. 이 리뷰 논문에서는 방사성탄소의 측정 방법과 농도 표현에 대하여 간단히 소개하고 방사성탄소를 해양의 유기탄소 순환 연구에 이용한 예들을 살펴보았다. 입자유기탄소와 용존유기탄소의 기원 물질 및 순환, 저서생물의 선택적 섭식, 입자유기물의 생화학적 화합물군의 거동, 분자크기에 따라 분류한 용존유기물군의 거동, 퇴적물의 수평 이동, 퇴적물의 연대측정, 육상기원 유기물의 거동, 미생물 유기물의 기원 물질, 할로겐화 유기물의 기원을 이해하기 위한 연구의 예들을 통하여 유기물전체, 유기물군, 특정 유기화합물의 방사성탄소 측정이 어떻게 해양 유기탄소 순환 연구에 활용될 수 있는지 기술하였다.

Keywords

References

  1. Aluwihare, L.I., D.J. Repeta, and R.F. Chen, 2002. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight. Deep-Sea Res. II, 49: 4421-4437. https://doi.org/10.1016/S0967-0645(02)00124-8
  2. Arnold, J.R. and W.F. Libby, 1949. Age determinations by radiocarbon content: Checks with samples of known age. Science, 110: 678-680. https://doi.org/10.1126/science.110.2869.678
  3. Benner, R., B. Benitez-Nelson, K. Kaiser, and R.M.W. Amon, 2004. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett., 31: L05305, doi:05310.01029/02003GL019251.
  4. Bennett, C.L., R.P. Beukens, M.R. Clover, H.E. Gove, R.B. Liebert, A.E. Litherland, K.H. Purser, and W.H. Sondheim, 1977. Radiocarbon dating using electrostatic accelerators-negative ions provide the key, Science. 198: 508-510. https://doi.org/10.1126/science.198.4316.508
  5. Berelson, W.M., 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II, 49: 237-251.
  6. Blair, N.E., E.L. Leithold, S.T. Ford, K.A. Peeler, J.C. Holmes, and D.W. Perkey, 2003. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta, 67: 63-73. https://doi.org/10.1016/S0016-7037(02)01043-8
  7. Brandes, J.A., C. Lee, S. Wakeham, M. Peterson, C. Jacobsen, S. Wirick, and G. Cody, 2004. Examining marine particulate organic matter at sub-micron scales using scanning transmission X-ray microscopy and carbon X-ray absorption near edge structure spectroscopy. Mar. Chem., 92: 107-121. https://doi.org/10.1016/j.marchem.2004.06.020
  8. Broecker, W.S. and E.A. Olson, 1959. Lamont radiocarbon measurements VI. Radiocarbon, 1: 111-132.
  9. Conte, M.H., N. Ralph, and E.H. Ross, 2001. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res. II, 48: 1471-1505. https://doi.org/10.1016/S0967-0645(00)00150-8
  10. Dickens, A.F., Y. Glinas, C.A. Masiello, S. Wakeham, and J.I. Hedges, 2004. Reburial of fossil organic carbon in marine sediments. Nature, 427: 336-339. https://doi.org/10.1038/nature02299
  11. Dittmar, T., B. Koch, N. Hertkorn, and G. Kattner, 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods, 6: 230-235. https://doi.org/10.4319/lom.2008.6.230
  12. Drenzek, N.J., D.B. Montlucon, M.B. Yunker, R.W. Macdonald, and T.I. Eglinton, 2007. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular $^{13}C$ and $^{14}C$ measurements. Mar. Chem., 103: 146-162. https://doi.org/10.1016/j.marchem.2006.06.017
  13. Druffel, E.R.M. and P.M. Williams, 1990. Identification of a deep marine source of particulate organic carbon using bomb $^{14}C$. Nature, 347: 172-174. https://doi.org/10.1038/347172a0
  14. Druffel, E.R.M., P.M. Williams, J.E. Bauer, and J.R. Ertel, 1992. Cycling of Dissolved and Particulate Organic Matter in the Open Ocean. J. Geophys. Res., 97: 15639-15659. https://doi.org/10.1029/92JC01511
  15. Eglinton, T.I., L.I. Aluwihare, J.E. Bauer, E.R. M. Druffel, A.P. McNichol, 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem., 68: 904-912. https://doi.org/10.1021/ac9508513
  16. Eglinton, T.I., B.C. Benitez-Nelson, A. Pearson, A.P. McNichol, J.E. Bauer, and E.R.M. Druffel, 1997. Variability in Radiocarbon Ages of Individual Organic Compounds from Marine Sediments. Science, 277: 796-799. https://doi.org/10.1126/science.277.5327.796
  17. Eglinton, T.I., G. Eglinton, L. Dupont, E.R. Sholkovitz, D. Montlucon, and C.M. Reddy, 2002. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem., Geophys., Geosyst., 3: 10.1029/2001GC000269.
  18. Flores-Cervantes, D.X., D.L. Plata, J.K. MacFarlane, C.M. Reddy, and P.M. Gschwend, 2009. Black carbon in marine particulate organic carbon: Inputs and cycling of highly recalcitrant organic carbon in the Gulf of Maine. Mar. Chem., 113: 172-181. https://doi.org/10.1016/j.marchem.2009.01.012
  19. Godwin, H., 1962. Radiocarbon dating. Nature, 195: 943-945. https://doi.org/10.1038/195943a0
  20. Goni, M.A., M.B. Yunker, R.W. Macdonald, and T.I. Eglinton, 2005. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar. Chem., 93: 53-73. https://doi.org/10.1016/j.marchem.2004.08.001
  21. Guo, L. and P.H. Santschi, 1996. A critical evaluation of the crossflow ultrafiltration technique for sampling colloidal organic carbon in seawater. Mar. Chem., 55: 113-127. https://doi.org/10.1016/S0304-4203(96)00051-5
  22. Guo, L., P.H. Santschi, L.A. Cifuentes, S.E. Trumbore, and J. Southon, 1996. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic ($^{13}C$ and $^{14}C$) signatures. Limnol. Oceanogr., 41: 1242-1252. https://doi.org/10.4319/lo.1996.41.6.1242
  23. Gustafsson, O., F. Haghseta, C. Chan, J.K. MacFarlane, and P.M. Gschwend, 1997. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ. Sci. Technol., 31: 203-209. https://doi.org/10.1021/es960317s
  24. Gustafsson, O., M. Krusa, Z. Zencak, R.J. Sheesley, L. Granat, E. Engstrom, P.S. Praveen, P.S. Rao, C. Leck, and H. Rodhe, 2009. Brown clouds over south Asia: Biomass or fossil fuel combustion?, Science. 323: 495-498. https://doi.org/10.1126/science.1164857
  25. Hansell, D.A. and C.A. Carlson, 1998. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395: 263-266. https://doi.org/10.1038/26200
  26. Hansman, R., S. Griffin, J.T. Watson, E.R.M. Druffel, A.E. Ingalls, A. Pearson, and L.I. Aluwihare, 2009. The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc. Natl. Acad. Sci. U.S.A., 106: 6513-6518. https://doi.org/10.1073/pnas.0810871106
  27. Hedges, J.I. and J.H. Stern, 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr., 29: 657-663. https://doi.org/10.4319/lo.1984.29.3.0657
  28. Hedges, J.I., 1992. Global biogeochemical cycles: progress and problems. Mar. Chem., 39: 67-39. https://doi.org/10.1016/0304-4203(92)90096-S
  29. Hedges, J.I., J.A. Baldock, Y. Gelinas, C. Lee, M. Peterson, and S.G. Wakeham, 2001. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature, 409: 801-804. https://doi.org/10.1038/35057247
  30. Hollister, C.D. and A.R.M. Nowell, 1991. Prologue: Abyssal storms as a global geologic process. Mar. Geol., 99: 275-280. https://doi.org/10.1016/0025-3227(91)90044-5
  31. Honda, M.C., M. Kusakabe, S. Nakabayashi, and M. Katagiri, 2000. Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of $^{14}C$-poor sediment from the continental shelf. Mar. Chem., 68: 231-247. https://doi.org/10.1016/S0304-4203(99)00080-8
  32. Honjo, S., 1982. Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, 218: 883-884. https://doi.org/10.1126/science.218.4575.883
  33. Hwang, J. and E.R.M. Druffel, 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean?. Science, 299: 881-884. https://doi.org/10.1126/science.1078508
  34. Hwang, J. and E.R.M. Druffel, 2005. Blank correction for Δ14C measurements in organic compound classes of oceanic particulate matter. Radiocarbon, 47: 75-87. https://doi.org/10.1017/S0033822200052218
  35. Hwang, J., E.R.M. Druffel, and J.E. Bauer, 2006a. Incorporation of aged dissolved organic carbon (DOC) by oceanic particulate organic carbon (POC): An experimental approach using natural carbon isotopes. Mar. Chem., 98: 315-322. https://doi.org/10.1016/j.marchem.2005.10.008
  36. Hwang, J., E.R.M. Druffel, T.I. Eglinton, and D.J. Repeta, 2006b. Source(s) and cycling of the nonhydrolyzable organic fraction of oceanic particles. Geochim. Cosmochim. Acta, 70: 5162-5168. https://doi.org/10.1016/j.gca.2006.07.020
  37. Hwang, J., E.R.M. Druffel, and T.I. Eglinton, 2010. Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles. Global Biogeochem. Cycles, 24: GB4016, doi:4010.1029/2010GB003802.
  38. Ingalls, A.E. and A. Pearson, 2005. Ten years of compound-specific radiocarbon analysis. Oceanography, 18: 18-31. https://doi.org/10.5670/oceanog.2005.22
  39. Ingalls, A.E., S.R. Shah, R.L. Hansman, L.I. Aluwihare, G.M. Santos, E.R.M. Druffel, and A. Pearson, 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. U.S.A., 103: 6442-6447. https://doi.org/10.1073/pnas.0510157103
  40. Ishikawa, N., M. Uchida, Y. Shibata, and I. Tayasu, 2010. A new application of radiocarbon ($^{14}C$) concentrations to stream food web analysis. Nucl. Instr. Meth. B, 268: 1175-1178. https://doi.org/10.1016/j.nimb.2009.10.127
  41. Jull, A.J.T. and G.S. Burr, 2006. Accelerator mass spectrometry: Is the future bigger or smaller?. Earth Planet. Sci. Lett., 243: 305-325. https://doi.org/10.1016/j.epsl.2005.12.018
  42. Kang, D.-J. M.-K. Park and K.-R. Kim, 2001. Application of AMS Radiocarbon in Earth system Science Studies. J. of Korean Physical Society, 39: 755-761.
  43. Kao, S.-J. and K.-K. Liu, 1996. Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan. Limnol. Oceanogr., 41: 1749-1757. https://doi.org/10.4319/lo.1996.41.8.1749
  44. Karner, M.B., E.F. DeLong, and D.M. Karl, 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507-510. https://doi.org/10.1038/35054051
  45. Komada, T., E.R.M. Druffel, and S.E. Trumbore, 2004. Oceanic export of relict carbon by small mountainous rivers. Geophys. Res. Lett., 31: L07054, doi:07010.01029/02004GL019512.
  46. Komada, T., M.R. Anderson, and C.L. Dorfmeier, 2008. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, $\delta^{13}C\;\Delta^{14}C:$ comparison of fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr. Methods, 6: 254-262. https://doi.org/10.4319/lom.2008.6.254
  47. Lee, C., S. Wakeham, and C. Arnosti, 2004. Particulate organic matter in the sea: the composition conundrum. Ambio, 33: 565-575. https://doi.org/10.1579/0044-7447-33.8.565
  48. Liu, Z., J. Mao, M.L. Peterson, C. Lee, S.G. Wakeham, and P.G. Hatcher, 2009. Characterization of sinking particles from the northwest Mediterranean Sea using advanced solid-state NMR. Geochim. Cosmochim. Acta, 73: 1014-1026. https://doi.org/10.1016/j.gca.2008.11.019
  49. Loh, A.N., J.E. Bauer, and E.R.M. Druffel, 2004. Variable ageing and storage of dissolved organic components in the open ocean. Nature, 430: 877-881. https://doi.org/10.1038/nature02780
  50. Masiello, C.A. and E.R.M. Druffel, 1998. Black Carbon in Deep-Sea Sediments. Science, 280: 1911-1913. https://doi.org/10.1126/science.280.5371.1911
  51. Masiello, C.A. and E.R.M. Druffel, 2001. Carbon isotope geochemistry of the Santa Clara River. Glob. Biogeochem. Cycles, 15: 407-416. https://doi.org/10.1029/2000GB001290
  52. McNichol, A.P. and L.I. Aluwihare, 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev., 107: 443-466. https://doi.org/10.1021/cr050374g
  53. McNichol, A.P., E.A. Osborne, A.R. Gagnon, B. Fry, and G.A. Jones, 1994. TIC, TOC, DIC, DOC, PIC, POC-unique aspects in the preparation of oceanographic samples for $^{14}C$-AMS. Nucl. Instr. and Meth. B, 92: 162-165. https://doi.org/10.1016/0168-583X(94)95998-6
  54. Mollenhauer, G., M. Kienast, F. Lamy, H. Meggers, R.R. Schneider, J.M. Hayes, and T.I. Eglinton, 2005. An evaluation of $^{14}C$ age relationships between co-occuring foraminifera, alkenones, and total organic carbon in continental margin sediments., Paleoceanography, 20: PA1016.
  55. Nelson, D.E., R.G. Korteling, and W.R. Stott, 1977. $^{14}C$ detection at natural concentrations. Science, 198: 507-508. https://doi.org/10.1126/science.198.4316.507
  56. Ohkouchi, N., T.I. Eglinton, and J.M. Hayes, 2003. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies. Radiocarbon, 45: 17-24. https://doi.org/10.1017/S0033822200032355
  57. Ohkouchi, N., T.I. Eglinton, L.D. Keigwin, and J.M. Hayes, 2002. Spatial and temporal offsets between proxy records in a sediment drift. Science, 298: 1224-1227. https://doi.org/10.1126/science.1075287
  58. Ohkouchi, N., L. Xu, C.M. Reddy, D. Montlucon, T.I. Eglinton, 2005. Radiocarbon dating of alkenones from marine sediments: I. Isolation protocal. Radiocarbon, 47: 401-412. https://doi.org/10.1017/S0033822200035189
  59. Passow, U., R.F. Shipe, A. Murray, D.K. Pak, M.A. Brzezinski, and A.L. Alldredge, 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont. Shelf Res., 21: 327-346. https://doi.org/10.1016/S0278-4343(00)00101-1
  60. Pearson, A. and T.I. Eglinton, 2000. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compoundspecific $\Delta^{14}C\;and\;\delta^{13}C$ data. Org. Geochem., 31: 1103-1116. https://doi.org/10.1016/S0146-6380(00)00121-2
  61. Pearson A, T.I. Eglinton, A.P. McNichol, 2000. An organic tracer for surface ocean radiocarbon. Paleoceanography, 15: 541-550. https://doi.org/10.1029/1999PA000476
  62. Pearson, A., J.S. Seewald, and T.I. Eglinton, 2005. Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim. Cosmochim. Acta, 69: 5477-5486. https://doi.org/10.1016/j.gca.2005.07.007
  63. Pearson, A., A.P. McNichol, R.J. Schneider, K.F.V. Reden, and Y. Zheng, 1998. Microscale AMS $^{14}C$ measurement at NOSAMS. Radiocarbon, 40: 61-75.
  64. Pearson, A., A.P. McNichol, B.C. Benitez-Nelson, J.M. Hayes, and T.I. Eglinton, 2001. Origin of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific $\Delta^{14}C$ analysis. Geochim. Cosmochim. Acta, 65: 3123-3137. https://doi.org/10.1016/S0016-7037(01)00657-3
  65. Peulv, S., J.W. de Leeuw, M.-A. Sicre, M. Baas, and A. Saliot, 1996. Characterization of macromolecular organic matter in sediment traps from the northwestern Mediterranean Sea. Geochim. Cosmochim. Acta, 60: 1239-1259. https://doi.org/10.1016/0016-7037(95)00442-4
  66. Prahl, F.G. and S.G. Wakeham, 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature, 330: 367-369. https://doi.org/10.1038/330367a0
  67. Purinton, B.L., D.J. DeMaster, C.J. Thomas, and C.R. Smith, 2008. $^{14}C$ as a tracer of labile organic matter in Antarctic benthic food webs. Deep-Sea Res. II, 55: 2438-2450. https://doi.org/10.1016/j.dsr2.2008.06.004
  68. Ramsey, C.B. and R.E.M. Hedges, 1994. Carbon dioxide sputter source development at Oxford, Nucl. Instr. Meth. B, 92: 100-104. https://doi.org/10.1016/0168-583X(94)95986-2
  69. Rau, G.H., D.M. Karl, and R.S. Carney, 1986. Does inorganic carbon assimilation cause $^{14}C$ depletion in deep-sea organisms?. Deep-Sea Res., 33: 349-357. https://doi.org/10.1016/0198-0149(86)90096-8
  70. Reddy, C.M., A. Pearson, L. Xu, A.P. McNichol, B.A. Benner Jr., S.A. Wise, G.A. Klouda, L.A. Currie, and T.I. Eglinton, 2002. Radiocarbon as a tool to apportion the sources of polycycling aromatic hydrocarbons and black carbon in environmental samples. Environ. Sci. Technol., 36: 1774-1782. https://doi.org/10.1021/es011343f
  71. Reimer, P.J., et al., 2009. Intcal09 and marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 51: 1111-1150.
  72. Repeta, D.J. and L.I. Aluwihare, 2006. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: Implications for organic carbon cycling. Limnol. Oceanogr., 51: 1045-1053. https://doi.org/10.4319/lo.2006.51.2.1045
  73. Roberts, M.L., K.F. von Reden, J.R. Burton, C.P. McIntyre, and S.R. Beaupre, in press. A gas-accepting ion source for accelerator mass spectrometry: Progress and applications. Nucl. Instr. Meth. B.
  74. Roberts, M.L., R.J. Schneider, K.F. von Reden, J.S.C. Wills, B.X. Han, J.M. Hayes, B.E. Rosenheim, and W.J. Jenkin, 2007. Progress on a gas-accepting ion source for continous-flow accelerator mass spectrometry. Nucl. Instr. Meth. B, 259: 83-87. https://doi.org/10.1016/j.nimb.2007.01.189
  75. Roland, L.A., M.D. McCarthy, and T. Guilderson, 2008. Sources of molecularly uncharacterized organic carbon in sinking particles from three ocean basins: A coupled $\Delta^{14}C\;and\;\delta^{13}C$ approach. Mar. Chem., 111: 199-213. https://doi.org/10.1016/j.marchem.2008.05.010
  76. Sachs, J.P. and S.J. Lehman, 1999. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science, 286: 756-759. https://doi.org/10.1126/science.286.5440.756
  77. Santos, G.M., J.R. Southon, S. Griffin, S.R. Beaupre, and E.R.M. Druffel, 2007. Ultra small-mass AMS $^{14}C$ sample preparation and analyses at KCCAMS/UCI Facility. Nucl. Instr. Meth. B, 259: 293-302. https://doi.org/10.1016/j.nimb.2007.01.172
  78. Schouten, S., E.C. Hopmans, E. Shefus, and J.S. Sinninghe Damste, 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett., 204: 265-274. https://doi.org/10.1016/S0012-821X(02)00979-2
  79. Stuiver, M., 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon, 25: 793-795. https://doi.org/10.1017/S0033822200006159
  80. Stuiver, M. and H.A. Polach, 1977. Reporting of $^{14}C$ data. Radiocarbon, 19: 355-363. https://doi.org/10.1017/S0033822200003672
  81. Teuten, E.L., L. Xu, and C.M. Reddy, 2005. Two abundant bioaccumulated halogenated compounds are natural products. Science, 307: 917-920. https://doi.org/10.1126/science.1106882
  82. Verardo, D.J., P.N. Froelich, and A. McIntyre, 1989. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res., 37: 157-165.
  83. Vogel, J.S., D.E. Nelson, and J.R. Southon, 1987. $^{14}C$ Background Levels in an accelerator mass spectrometry system. Radiocarbon, 29: 323-333. https://doi.org/10.1017/S0033822200043733
  84. Wakeham, S.G. and E.A. Canuel, 1988. Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: Implications for particle dynamics. J. Mar. Res., 46: 183-213. https://doi.org/10.1357/002224088785113748
  85. Wakeham, S.G., C. Lee, J.I. Hedges, P.J. Hernes, and M.L. Peterson, 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta, 61: 5363-5369. https://doi.org/10.1016/S0016-7037(97)00312-8
  86. Wang, X.-C., E. Druffel, and C. Lee, 1996. Radiocarbon in organic compound classes in particular organic matter and sediment in the deep northeast Pacific Ocean. Geophys. Res. Lett., 23: 3583-3586. https://doi.org/10.1029/96GL03423
  87. Wang, X.-C., E.R.M. Druffel, S. Griffin, C. Lee, and M. Kashgarian, 1998. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean. Geochim. Cosmochim. Acta, 62: 1365-1378. https://doi.org/10.1016/S0016-7037(98)00074-X
  88. Williams, P.M. and E.R.M. Druffel, 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330: 246-248. https://doi.org/10.1038/330246a0

Cited by

  1. Spatial and Temporal Variation of Dissolved Inorganic Radiocarbon in the East Sea vol.36, pp.2, 2014, https://doi.org/10.4217/OPR.2014.36.2.111
  2. Environmental Characteristics and Macrobenthic Community Structure of Yubu Island, a UNESCO-Designated Migratory Bird Sanctuary in the South Korea vol.9, pp.5, 2012, https://doi.org/10.3390/jmse9050455