DOI QR코드

DOI QR Code

Kinetic Studies of the Catalytic Low Rank Coal Gasification under CO2 Atmosphere

CO2분위기하에서 저급석탄 촉매가스화 반응 특성 연구

  • Park, Chan Young (Graduate school of green energy technology, Chungnam National University) ;
  • Park, Ji Yun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Si Hoon (Korea Institute of Energy Research) ;
  • Rhu, Ji Ho (Korea Institute of Energy Research) ;
  • Han, Moon Hee (Graduate school of green energy technology, Chungnam National University) ;
  • Rhee, Young Woo (Graduate school of green energy technology, Chungnam National University)
  • 박찬영 (충남대학교 녹색에너지기술전문대학원) ;
  • 박지윤 (충남대학교 바이오응용화학과) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 유지호 (한국에너지기술연구원) ;
  • 한문희 (충남대학교 녹색에너지기술전문대학원) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2012.06.15
  • Accepted : 2012.07.29
  • Published : 2012.12.01

Abstract

In this study, kinetic studies and analysis of the produced syngas were conducted for low rank coal gasification under $CO_2$ atmosphere. 6 coals were analyzed to measure amount of sulfur and ash by proximate and ultimate analyses. And then they were analyzed to select suitable sample by using Thermogravimetric analyzer (TGA). Selected coal sample Samhwa was mixed with catalysts. Mixed samples with catalysts were used to get activation energy under $CO_2$ atmosphere by using Kissinger's method and shrinking core model (SCM). Also, analysis of produced syngas was performed by Gas Chromatography (GC). In this experiment, activation of the $K_2CO_3$ was the best performance, and result of the analysis of the syngas showed similar trend with result of the activation energy.

본 촉매가스화 실험에서 촉매로서 가치가 있는 천연광물과 순수촉매를 사용하여 저급석탄의 $CO_2$분위기하 활성화 에너지 및 생성된 합성가스의 성분을 분석하였다. 먼저 공업 분석과 원소 분석을 통해 6가지 저급석탄의 회분과 황 함유량을 측정하였다. 그 후 Thermogravimetric Analyzer (TGA)를 통해 저급석탄 열분해반응 특성을 고려하여 실험에 가장 적합한 저급석탄을 선정하였다. 선정된 삼화 저급석탄은 촉매와 섞어 $CO_2$분위기하 TGA실험을 진행하였으며, 결과를 토대로 Kissinger 방법을 이용한 활성화 에너지를 구하였다. 또한 shrinking core model을 이용해 활성화 에너지를 구하여 Kissinger 방법과 비교하였다. 그리고 반응기에서 이산화탄소 분위기하 생성된 합성가스는 Gas Chromatography (GC)를 이용하여 분석하였다. 가스를 분석한 결과 수소의 생성량은 $K_2CO_3$를 촉매로 사용하였을 경우 가장 크게 나타났으며, 앞서 구한 활성화 에너지 결과와 일치하는 경향을 나타내었다.

Keywords

References

  1. Sung, D. W., "How to replace petroluem as coal?," LG business insight, 952, 22-25(2007).
  2. Yun, Y. S., "The Status of Coal Gafisfication Technology," New & Renewable Energy Journal, 55-61(2005).
  3. Song, B. H., Kang, S. K. and Kim, S. D., "Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-Steam Gasification," Korean J. Chem. Eng., 6(30), 749-759(1992).
  4. Ochoa, J., Cassanello, M. C., Bonelli, P. R. and Cukierman, A. L., "CO Gasification of Argentinean Coal Chars: A Kinetic Characterization," Fuel Process. Technol., 74, 161(2001). https://doi.org/10.1016/S0378-3820(01)00235-1
  5. Sun, Z. Q., Wu, J. H. and Zhang, D., "$CO_{2}$ and $H_{2}O$ Gasification Kinetics of a Coal Char in the Presence of Methane," Energy Fuels, 22, 2160 (2008). https://doi.org/10.1021/ef8000949
  6. Korea Resource Corporation, "State of mineral reserves," 20-21 (2009).
  7. Kissinger, H. E., "Reaction Kinetics in Differential Thermal Analysis," Anal. Chem., 29, 1702(1957). https://doi.org/10.1021/ac60131a045
  8. Szekely, J. and Evans, J. W., "A Structural Model for Gas-solid Reactions with a Moving Boundary," Chem. Eng. Sci., 25, 1091- 1107(1970). https://doi.org/10.1016/0009-2509(70)85053-9
  9. McKee, D. W., "Gasification of Graphite in Carbon Dioxide and Water Vapor-the Catalytic Effects of Alkali Metal Salts," Carbon, 20, 62(1982).
  10. Sams, D. A., Talverdian, T. and Shadman, F., "Kinetics of Catalyst Loss During Potassium-catalysed $CO_{2}$ Gasification of Carbon," Fuel, 64(9), 1208-1214(1985). https://doi.org/10.1016/0016-2361(85)90176-0
  11. Park, S. T., Choi, Y. T. and Sohn, J. M., "The Study of Gasification of a Lignite Impregnated by $K_{2}CO_{3}$, $Mn(NO_{4})_{2}$ and $(NO_{3})_{2}$, Appl. Chem. Eng., 22(3), 312-318(2011).
  12. Irfan, M. F., Usman, M. R. and Kusakabe, K., "Coal Gasification in $CO_{2}$ Atmosphere and Its Kinetics Since 1948: A Brief Review," Energy, 36, 12-40(2011). https://doi.org/10.1016/j.energy.2010.10.034
  13. Wang, J., Yao, Y., Cao, J. and Jiang, M., "Enhanced Catalysis of $K_{2}CO_{3}$ for Steam Gasification of Coal Char by Using $Ca(OH)_{2}$ in Char Preparation," Fuel, 89, 310-317(2010). https://doi.org/10.1016/j.fuel.2009.09.001
  14. Sharma, A., Takanohashi, T., Morishita, K., Takarada, T. and Saito, I., "Low Temperature Catalytic Steam Gasification of Hyper Coal to Produce $H_{2}$ and Synthesis Gas," Fuel, 87, 491-497(2008). https://doi.org/10.1016/j.fuel.2007.04.015
  15. Sharma, A., Takanohashi, T. and Saito, I. "Effect of Catalyst Addition on Gasification Reactivity of HyperCoal and Coal with Steam at 775-$700^{\circ}C$," Fuel, 87, 2686-2690(2008). https://doi.org/10.1016/j.fuel.2008.03.010
  16. Jaffri, G.-E.-R., Zhang, J.-Y., "Catalytic Gasification Characteristics of Mixed Black Liquor and Calcium Catalyst in Mixing (air/steam) Atmosphere," J. Fuel Chem. Technol., 36(4), 406-414 (2008). https://doi.org/10.1016/S1872-5813(08)60025-0
  17. Meng, L., Wang, M., Yang, H., Hongyan, Y., Chang, L., "Catalytic Effect of Alkali Carbonates on $CO_{2}$ Gasification of Pingshuo Coal," Int. J. Mining Sci. and Technol., 21, 587-590(2011).
  18. Wang, J., Sakanishi, K. and Saito, I., "High-Yield Hydrogen Production by Steam Gasification of HyperCoal (Ash-Free Coal Extract) with Potassium Carbonate: Comparison with Raw Coal," Energy Fuels, 19, 2114-2120(2005). https://doi.org/10.1021/ef040089k

Cited by

  1. Gasification for Cyprus Coal by Gas-Solid Reaction Model vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.653
  2. Kinetic Study on Low-Rank Coal Char: Characterization and Catalytic CO2 Gasification vol.142, pp.3, 2016, https://doi.org/10.1061/(ASCE)EY.1943-7897.0000294
  3. 고정층 반응기에서의 저등급 석탄 혼합촉매가스화 반응특성 vol.55, pp.1, 2012, https://doi.org/10.9713/kcer.2017.55.1.99