DOI QR코드

DOI QR Code

김치냉장고의 숙성 후 저장 및 저온 저장 모드에서 6개월간 저장한 김장 김치의 발효특성 비교

Comparison of Fermentation Properties of Winter Kimchi Stored for 6 Months in a Kimchi Refrigerator Under Ripening Mode or Storage Mode

  • 이은화 (부산대학교 식품영양학과 및 김치연구소) ;
  • 이명주 (삼성전자 생활가전사업부 냉장고개발그룹) ;
  • 송영옥 (부산대학교 식품영양학과 및 김치연구소)
  • Lee, Eun-Hwa (Dept. of Food Science & Nutrition and Kimchi Research Institute, Pusan National University) ;
  • Lee, Myung-Ju (Refrigerator Platform R&D Lab, Digital Appliances, Samsung Electronics) ;
  • Song, Yeong Ok (Dept. of Food Science & Nutrition and Kimchi Research Institute, Pusan National University)
  • 투고 : 2012.06.05
  • 심사 : 2012.10.17
  • 발행 : 2012.11.30

초록

김장김치를 김치냉장고에서 6개월간 '숙성 후 저장'과 '저온 저장' 모드에서 저장하였을 때 발효 양상을 비교해 보았다. 본 연구에 사용한 '숙성 후 저장' 모드에 보관한 김치는 $10^{\circ}C$에서 5일간 발효시킨 후 $-2.5^{\circ}C$에 저장한 F1김치, $15^{\circ}C$에서 1일 발효시킨 후 $-2.5^{\circ}C$에서 저장한 F2김치이고, '저온 저장'에 보관한 김치는 담금 즉시 $-1^{\circ}C$에 저장한 S1김치와 $-2.5^{\circ}C$에 저장한 F2김치 4종류이다. '숙성 후 저장'한 F1김치는 2주에 pH 4.4, 그리고 산도는 0.6%로 숙성기에 접어들었으나 F2김치는 8주, '저온 저장'한 S1김치는 12주에 그리고 S2김치는 저장 말기에 숙성기로 접어들었다. Lactobacillus spp. 생육은 F1 및 F2김치에서는 저장 초기부터 급속히 증식하여 8주에 최대 균수인 8.0~9.0 log CFU/mL에 도달한 후 F1김치에서는 균수가 6개월간 지속된 반면, F2김치에서는 저장 12주 이후 감소하였다. S1과 S2김치에서는 8주에 최대 균수인 6.8 log CFU/mL에 도달하여 적숙기 최대 균수에 미치지 못하였다. Leuconostoc spp.는 저장모드에 따라 최대 생육 시점은 다르나 8.0~9.0 log CFU/mL에 도달하였다. F1김치의 Leuconostoc spp.는 6개월 동안 지속적으로 성장하여 최대 생육에 도달한 반면, 다른 김치 시료에서는 최대 생육 후 균이 감소하였다. 고온 젖산균인 Lactobacillus spp.의 생육은 '저온 저장'한 김치에서 억제되었으나 Leuconostoc spp.의 생육은 $-2.5^{\circ}C$와 같이 낮은 온도에서도 최대 생육을 하였다. 김장김치의 관능은 저장 3개월까지 외관, 신맛, 탄산미, 아삭아삭함에서 F1김치가 가장 높은 평가를 받았는데 이는 Lactobacillus spp.와 Leuconostoc spp.의 균수가 가장 높았기 때문으로 생각된다. 6개월 후에는 F1와 S1김치가 높은 평가를 받았는데, S1김치는 저장 말기에 신맛과 탄산미가 증가하는 현상을 보였는데, 이는 Leuconostoc spp.의 균수 저장 후기에 높아졌기 때문으로 생각된다. 이상의 결과를 종합해 보면 김장김치를 저장 기간 내 맛있게 먹기 위해서는 김치를 완전히 숙성시킨 후 저온에서 저장하는 방법인 $10^{\circ}C$에서 5일 동안 발효시켜 $-2.5^{\circ}C$로 온도 변환하는 시스템이 가장 우수하였다. '저온 저장' 온도로는 $-1^{\circ}C$$-2.5^{\circ}C$보다 우수하였다.

The purpose of this study is to determine long-term storage conditions for winter kimchi. Kimchi was stored in a kimchi refrigerator for 6 months with or without fermentation. Four different temperature systems used were as follows: 5 days at $10^{\circ}C$ followed by storage at $-2.5^{\circ}C$ (F1), 1 day at $15^{\circ}C$ followed by storage at $-2.5^{\circ}C$ (F2), storage at $-1^{\circ}C$ (S1), or at $-2.5^{\circ}C$ (S2). Time periods required for F1, F2, S1, or S2 kimchi to reach pH 4.4 and acidity 0.6% were 2, 8, 12, and 22 weeks, respectively. Lactobacillus spp. growth on F1 and F2 kimchi was faster and greater than that on S1 and S2 kimchi, revealing a maximum concentration of 8~9 verses 6.8 log CFU/mL, respectively. However, Leuconostoc spp. were fully grown (8~9 log CFU/mL) on all four kimchi samples regardless of temperature, even at $-2.5^{\circ}C$, although the times required to reach maximum growth were different. Growth of Lactobacillus and Leuconostoc spp. both decreased after reaching maximum levels, except for F1 kimchi. Sensory evaluation results for 3 month storage showed that F1 kimchi was the best among kimchi samples in terms of appearance, acidic taste, carbonated taste, crispiness, and moldy smell. For 6 months of storage, F1 and S1 kimchi were the most highly evaluated among the kimchi samples. Sensory evaluation result for S1 kimchi stored at $-1^{\circ}C$ was comparable to that of F1 kimchi due to fully grown Leuconostoc spp. Acidities of F1 and S1 kimchi after 6 months of storage were 0.8 and 0.7%, respectively. Taken together, fermentation of kimchi at $10^{\circ}C$ for 5 days followed by storage at $-2.5^{\circ}C$ for 6 months was optimal for high quality kimchi. Sensory properties of winter kimchi were significantly influenced by the degree of fermentation.

키워드

참고문헌

  1. Lee KI, Rhee SH, Han JS, Park KY. 1995. Kinds and characteristics of traditional special kimchi in Pusan and Kyungnam province. J Korean Soc Food Nutr 24: 734-743.
  2. Kang KO, Lee SH, Cha BS. 1995. A study on the material ratio of Kimchi products of Seoul and Chung Cheong area and chemical properties of the fermented Kimchis. Korean J Soc Food Sci 11: 487-493.
  3. Park SH, Lee JH. 2005. The correlation of physico-chemical characteristics of Kimchi with sourness and overall acceptability. Korean J Food Cookery Sci 21: 103-109.
  4. Noh JS, Seo HJ, Oh JH, Lee MJ, Kim MH, Cheigh HS, Song YO. 2007. Development of auto-aging system built in kimchi refrigerator for optimal fermentation and storage of Korean cabbage kimchi. Korean J Food Sci Technol 39: 432-437.
  5. Choi MS, Lim JH, Kim J. 2011. Improving the use of Kimchi refrigerator's inner space based on the user behavior study. J Korean Soc Basic Design Art 12: 417-425.
  6. Lee YK, Lee MY, Kim SD. 2004. Effect of monosodium glutamate and temperature change on the content of free amino acids in kimchi. J Korean Soc Food Sci Nutr 33: 399-404. https://doi.org/10.3746/jkfn.2004.33.2.399
  7. Lee HJ, Joo YJ, Park CS, Lee JS, Park YH, Ahn JS, Mheen TI. 1999. Fermentation patterns of green onion Kimchi and Chinese cabbage kimchi. Korean J Food Sci Technol 31: 488-494.
  8. Shin DH, Kim MS, Han JS, Lim DK, Bak WS. 1996. Changes of chemical composition and microflora in commercial kimchi. Korean J Food Sci Technol 28: 137-145.
  9. Mheen TI, Kwon TW. 1984. Effect of temperature and salt concentration on Kimchi fermentation. Korean J Food Sci Technol 16: 443-450.
  10. Jeon YS, Kye IS, Cheigh HS. 1999. Changes of vitamin C and fermentation characteristics of kimchi on different cabbage variety and fermentation temperature. J Korean Soc Food Sci Nutr 28: 773-779.
  11. Kim WJ, Kang KO, Kyung KH, Shin JI. 1991. Addition of salt and their mixtures for improvement of storage stability of kimchi. Korean J Food Sci Technol 23: 188-191.
  12. Gil BI, Choi ES. 2010. A study on the effects of the cold heat storage with salt water on the performance of a Kimchi refrigerator. Korean J Air-Cond Refrig Eng 22: 891-896.
  13. Cho Y, Rhee HS. 1991. Effect of lactic acid bacteria and temperature on kimchi fermentation (I). Korean J Soc Food Sci 7: 15-25.
  14. Park JA, Heo GY, Lee JS, Oh YJ, Kim BY, Mheen TI, Kim CK, Ahn JS. 2003. Change of microbial communities in kimchi fermentation at low temperature. Korean J Microbiol 39: 45-50.
  15. Noh JS, Seo HJ, Oh JH, Lee MJ, Kim MH, Cheigh HS, Song YO. 2007. Development of auto-aging system built in kimchi refrigerator for optimal fermentation and storage of Korean cabbage kimchi. Korean J Food Sci Technol 39: 432-437.
  16. Kim SD, Park IK, Lee MS. 1997. Effect of dried fishes water extracts on the kimchi fermentation. J Food Sci Technol 9: 33-38.
  17. Lee MJ, Kim HS, Lee SC, Park WP. 2000. Effects of sepiae os addition on the quality of kimchi during fermentation. J Korean Soc Food Sci Nutr 29: 592-596.
  18. Yoo MJ, Kim HR, Chung HJ. 2001. Changes in physicochemical and microbiological properties in low-temperature and long-term fermented kimchi during fermentation. Korean J Dietary Culture 16: 431-441.
  19. Kim MS, Jeong YH. 2004. Fermentative properties of taurine added Kimchi. J East Asian Soc Dietary Life 14: 438-442.
  20. Lee KH, Cho HY, Pyun YR. 1991. Kinetic modelling for the prediction of shelf-life of kimchi based on total acidity as a quility index. Korean J Food Sci Technol 23: 306-310.
  21. AOAC. 1990. Official methods of analysis. 15th ed. Association of official Analytical Chemists, Washington, DC, USA. p 60.
  22. Lee MK, Park WS, Kang KH. 1996. Selective media for isolation and enumeration of lactic acid bacteria from kimchi. J Korean Soc Food Sci Nutr 25: 754-760.
  23. So MH, Lee YS. 1997. Influences of cultural temperature on growth rates of lactic acid bacteria isolated from Kimchi. Korean J Food & Nutr 10: 110-116
  24. Kim KO, Lee YC. 1995. A sensory evaluation of food. Hakyeon Publishing Com., Seoul, Korea. p 192-268.
  25. Kang JH, Kang SH, Ahn ES, Yoo MJ, Chung HJ. 2004. Effect of the combination of fermentation temperature and time on the properties of Baechu kimchi. Korean J Food Culture 19: 30-42.
  26. Lee YH, Yang IW. 1970. Studies on the packaging and preservation of kimchi. J Korean Agric Chem Soc 13: 207-218.
  27. Choi SY, Kim YB, Yoo JY, Lee IS, Chung KS, Koo YJ. 1990. Effect of temperature and salts concentration of kimchi manufacturing on storage. Korean J Food Sci Technol 22: 707-710.
  28. Yu JJ, Oh SH. 2011. ${\gamma}$-Aminobutyric acid production and glutamate decarboxylase activity of Lactobacillus sakei OPK2-59 isolated from kimchi. Korean J Microbiol 47: 316-322.
  29. Yoo MJ, Kim HR, Chung HJ. 2001. Changes in physicochemical and microbiological properties in low-temperature and long-term fermented kimchi during fermentation. Korean J Dietary Culture 16: 431-441.
  30. Lee HJ, Baek JH, Yang M, Han HU, Ko YD, Kim HJ. 1993. Characteristics of lactic acid bacterial community during kimchi fermentation by temperature downshift. Korean J Microbiol 31: 346-353.

피인용 문헌

  1. Investigation of glucosinolates, and the antioxidant activity of Dolsan leaf mustard kimchi extract using HPLC and LC-PDA-MS/MS vol.41, pp.3, 2017, https://doi.org/10.1111/jfbc.12366
  2. Effect of Solar Salt on Kimchi Fermentation during Long-term Storage vol.46, pp.4, 2014, https://doi.org/10.9721/KJFST.2014.46.4.456
  3. Effects of Nitrite and Nitrate Contents of Chinese Cabbage on Formation of N-Nitrosodimethylamine during Storage of Kimchi vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.117
  4. Package pp.00221147, 2018, https://doi.org/10.1111/1750-3841.14383
  5. 뽕잎 추출액 첨가 김치의 품질 특성에 관한 연구 vol.24, pp.6, 2012, https://doi.org/10.17495/easdl.2014.12.24.6.827
  6. 가정용 냉장고의 고내온도 및 전력소비 실태조사 vol.35, pp.2, 2012, https://doi.org/10.12925/jkocs.2018.35.2.357