DOI QR코드

DOI QR Code

Enhanced Sintering Behavior and Electrical Properties of Single Phase BiFeO3 Prepared by Attrition Milling and Conventional Sintering

  • Jeon, Nari (Department of Materials Science and Engineering, Northwestern University) ;
  • Moon, Kyoung-Seok (Advanced Materials Research Center, Samsung Advanced Institute of Technology) ;
  • Rout, Dibyranjan (School of Applied Sciences (Physics), KIIT University) ;
  • Kang, Suk-Joong L. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2012.01.29
  • 심사 : 2012.07.11
  • 발행 : 2012.11.30

초록

Dense and single phase $BiFeO_3$ (BFO) ceramics were prepared using attrition milled calcined (coarse) powders of an average particle size of ${\approx}3{\mu}m$ by conventional sintering process. A relative density of ${\approx}96%$ with average grain size $7.3{\mu}m$ was obtained when the powder compacts were sintered at $850^{\circ}C$ even for a shorter duration of 10 min. In contrast, densification barely occurred at $800^{\circ}C$ for up to 12 h rather the microstruce showed the growth of abnormal grains. The grain growth behavior at different temperatures is discussed in terms of nonlinear growth rates with respect to the driving force. The sample sintered at $850^{\circ}C$ for 12 h showed enhanced electrical properties with leakage current density of $4{\times}10^{-7}A/cm^2$ at 1 kV/cm, remnant polarization $2P_r$ of $8{\mu}C/cm^2$ at 20 kV/cm, and minimal dissipation factor (tan ${\delta}$) of ~0.025 at $10^6$ Hz. These values are comparable to the previously reported values obtained using unconventional sintering techniques such as spark plasma sintering and rapid liquid phase sintering.

키워드

참고문헌

  1. W. Eerenstein, N. D. Mathur, and J. F. Scott, "Multiferroic and Magnetoelectric Materials," Nature, 442 [7104] 759-65 (2006). https://doi.org/10.1038/nature05023
  2. G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., 21 [24] 2463-85 (2009). https://doi.org/10.1002/adma.200802849
  3. G. D. Achenbach, W. J. James, and R. Gerson, "Preparation of Single-phase Polycrystalline $BiFeO_3$," J. Am. Ceram. Soc., 50 [8] 437 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15153.x
  4. T. T. Carvalho and P. B. Tavares, "Synthesis and Thermodynamic Stability of Multiferroic $BiFeO_3$," Mater. Lett., 62 [24] 3984-86 (2008). https://doi.org/10.1016/j.matlet.2008.05.051
  5. I. Szafraniak, M. Polomska, B. Hilczer, A. Pietraszko, and L Kepinski, "Characterization of $BiFeO_3$ Nanopowder Obtained by Mechanochemical Synthesis," J. Eur. Ceram. Soc., 27 [13-15] 4399-402 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.163
  6. F. Chen, Q. F. Zhang, J. H. Li, Y. J. Qi, C. J. Lu, X. B. Chen, X. M. Ren, and Y. Zhao, "Sol-gel Derived Multiferroic $BiFeO_3$ Ceramics with Large Polarization and Weak Ferromagnetism," Appl. Phys. Lett., 89 [9] 092910-3 (2006). https://doi.org/10.1063/1.2345603
  7. S. M. Selbach, M. A. Einarsrud, T. Tybell, and T. Grande, "Synthesis of $BiFeO_3$ by Wet Chemical Methods," J. Am. Ceram. Soc., 90 [11] 3430-34 (2007). https://doi.org/10.1111/j.1551-2916.2007.01937.x
  8. M. M. Kumar, V. R. Palkar, and K. Srinivas, "Suryanarayana SV. Ferroelectricity in a Pure $BiFeO_3$ Ceramic," Appl. Phys. Lett., 76 [19] 2764-66 (2000). https://doi.org/10.1063/1.126468
  9. D. Zhonghua and A. Yukikuni, "Electrical Properties of Multiferroic $BiFeO_3$ Ceramics Synthesized by Spark Plasma Sintering," J. Phys. D: Appl. Phys., 43 [44] 445403 (2010). https://doi.org/10.1088/0022-3727/43/44/445403
  10. R. Mazumder, D. Chakravarty, D. Bhattacharya, and A. Sen, "Spark Plasma Sintering of $BiFeO_3$," Mater. Res. Bull., 44 [3] 555-59 (2009). https://doi.org/10.1016/j.materresbull.2008.07.017
  11. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, "Room-temperature Saturated Ferroelectric Polarization in $BiFeO_3$ Ceramics Synthesized by Rapid Liquid Phase Sintering," Appl. Phys. Lett., 84 [10] 1731-33 (2004). https://doi.org/10.1063/1.1667612
  12. S. T. Zhang, M. H. Lu, D .Wu, Y. F. Chen, and N. B. Ming, "Larger Polarization and Weak Ferromagnetism in Quenched $BiFeO_3$ Ceramics with a Distorted Rhombohedral Crystal Structure," Appl. Phys. Lett., 87 [26] 262907 (2005). https://doi.org/10.1063/1.2147719
  13. D. Rout, K.-S. Moon, and S.-J. L. Kang, "Temperaturedependent Raman Scattering Studies of Polycrystalline $BiFeO_3$ Bulk Ceramics," J. Raman Spectrosc., 40 [6] 618-26 (2009). https://doi.org/10.1002/jrs.2172
  14. M. Valant, A. K. Axelsson, and N. Alford, "Peculiarities of a Solid-state Synthesis of Multiferroic Polycrystalline $BiFeO_3$," Chem. Mater., 19 [22] 5431-36 (2007). https://doi.org/10.1021/cm071730+
  15. S. V. Kalinin, M. R. Suchomel, P. K. Davies, and D.A. Bonnell, "Potential and Impedance Imaging of Polycrystalline $BiFeO_3$ Ceramics," J. Am. Ceram. Soc., 85 [12] 3011-17 (2002).
  16. N. Jeon, D. Rout, I. W. Kim, and S.-J. L. Kang, "Enhanced Multiferroic Properties of Single-phase $BiFeO_3$ Bulk Ceramics by Ho doping," Appl. Phys. Lett., 98 [7] 072901-3 (2011). https://doi.org/10.1063/1.3552682
  17. W. Schatt and K. P. Wieters, Powder Metallurgy, European Powder Metallurgy Association, Shrewsbury, UK, 1997.
  18. S. Y. Chung, D. Y. Yoon, and S.-J. L. Kang, "Effects of Donor Concentration and Oxygen Partial Pressure on Interface Morphology and Grain Growth Behavior in $SrTiO_3$," Acta Mater., 50 [13] 3361-71(2002). https://doi.org/10.1016/S1359-6454(02)00139-8
  19. J. G. Fisher, M. S. Kim, H. Y. Lee, and S.-J. L. Kang, "Effect of $Li_2O$ and PbO Additions on Abnormal Grain Growth in the $Pb(Mg_{1/3}Nb_{2/3})O_3$-35 mol%$PbTiO_3$ System," J. Am. Ceram. Soc., 87 [5] 937-42 (2004). https://doi.org/10.1111/j.1551-2916.2004.00937.x
  20. K. S. Moon and S.-J. L. Kang, "Coarsening Behavior of Round-edged Cubic Grains in the $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ System," J. Am. Ceram. Soc., 91 [10] 3191-96 (2008). https://doi.org/10.1111/j.1551-2916.2008.02620.x
  21. S. M. An and S.-J. L. Kang, "Boundary Structural Transition and Grain Growth Behavior in $BaTiO_3$ with $Nd_2O_3$ Doping and Oxygen Partial Pressure Change," Acta Mater., 59 [5] 1964-73 (2011). https://doi.org/10.1016/j.actamat.2010.11.062
  22. C. Rottman, "Roughening of Low-angle Grain-boundaries," Phys. Rev. Lett., 57 [6] 735-38 (1986). https://doi.org/10.1103/PhysRevLett.57.735
  23. T. E. Hsieh and R. W. Balluffi. "Observation of Roughening/ de-faceting Phase Transitions in Grain Boundaries," Acta Metall., 37 [8] 2133-9 (1989). https://doi.org/10.1016/0001-6160(89)90138-7
  24. S. B. Lee, W. Sigle, W. Kurtz, and M. Ruhle, "Temperature Dependence of Faceting in ${\Sigma}$ 5(310)[001] Grain Boundary of $SrTiO_3$," Acta Mater., 51 [4] 975-81 (2003). https://doi.org/10.1016/S1359-6454(02)00500-1
  25. Y. I. Jung, S. Y. Choi, and S.-J. L. Kang, "Effect of Oxygen Partial Pressure on Grain Boundary Structure and Grain Growth Behavior in $BaTiO_3$," Acta Mater., 54 [10] 2849-55 (2006). https://doi.org/10.1016/j.actamat.2006.02.025
  26. J. M. Howe, Interfaces in Materials, John Wiley & Sons, New York, 1997
  27. H. van Beijeren. "Exactly Solvable Model for the Roughening Transition of a Crystal Surface," Phys. Rev. Lett., 38 [18] 993-96 (1977). https://doi.org/10.1103/PhysRevLett.38.993
  28. S. E. Babcock and R. W. Balluffi, "Grain Boundary Kinetics-- II. In Situ Observations of the Role of Grain Boundary Dislocations in High-angle Boundary Migration," Acta Metall., 37 [9] 2367-76 (1989). https://doi.org/10.1016/0001-6160(89)90034-5
  29. H. Gleiter, "The Mechanism of Grain Boundary Migration," Acta Metall., 17 [5] 565-73(1969). https://doi.org/10.1016/0001-6160(69)90115-1
  30. K. L. Merkle and L. J. Thompson, "Atomic-scale Observation of Grain Boundary Motion," Mater. Lett., 48 [3-4] 188-93 (2001). https://doi.org/10.1016/S0167-577X(00)00301-3
  31. D. Y. Yoon, C. W. Park, and J. B. Koo. "The Step Growth Hypothesis for Abnormal Grain Growth"; pp. 3-21 in Ceramic Interfaces Vol. 2, Ed. by H. I. Yoo and S.-J. L. Kang, Institute of Materials, London, 2001.
  32. S. M. An, B. K. Yoon, S. Y. Chung, and S. -J. L. Kang, "Nonlinear Driving Force-velocity Relationaship for the Migration of Faceted Boundaries," Acta Mater., 60 [11] 4531-39 (2012). https://doi.org/10.1016/j.actamat.2012.05.006
  33. Y. I. Jung, S.-J. L. Kang, and D. Y. Yoon, "Coarsening of Polyhedral Grains in a Liquid Matrix," J. Mater. Res., 24 [9] 2949-59 (2009). https://doi.org/10.1557/jmr.2009.0356
  34. S.-J. L. Kang, M. G. Lee, and S. M. An, "Microstructural Evolution during Sintering with Control of the Interface Structure," J. Am. Ceram. Soc., 92 [7] 1464-71 (2009). https://doi.org/10.1111/j.1551-2916.2009.03106.x
  35. S. Y. Choi and S.-J. L. Kang, "Sintering Kinetics by Structural Transition at Grain Boundaries in Barium Titanate," Acta Mater., 52 [10] 2937-43 (2004). https://doi.org/10.1016/j.actamat.2004.02.039
  36. M. G. Lee, S. Y. Chung, and S.-J. L. Kang, "Boundary Faceting- dependent Densification in a $BaTiO_3$ Model System," Acta Mater., 59 [2] 692-98 (2011). https://doi.org/10.1016/j.actamat.2010.10.007
  37. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and Z. Zhao, "Effects of Ion Doping at Different Sites on Electrical Properties of Multiferroic $BiFeO_3$ Ceramics," J. Phys. D: Appl. Phys., 41 [6] 065003 (2008). https://doi.org/10.1088/0022-3727/41/6/065003
  38. A. Z. Simoes, F. G. Garcia, and C. D. S. Riccardi. "Rietveld Analysys and Electrical Properties of Lanthanum Doped $BiFeO_3$ Ceramics," Mater. Chem. Phys., 116 [2-3] 305-9 (2009). https://doi.org/10.1016/j.matchemphys.2009.04.036
  39. Z. Yan, K. F. Wang, J. F. Qu, Y. Wang, Z. T. Song, and S. L. Feng. "Processing and Properties of Yb-doped $BiFeO_3$ ceramics," Appl. Phys. Lett., 91[8] 082906-3 (2007). https://doi.org/10.1063/1.2775034
  40. J. C. Chen, J. M. Wu, "Dielectric Properties and Ac Conductivities of Dense Single-phased $BiFeO_3$ Ceramics," Appl. Phys. Lett., 91 [18] 182903-5 (2007). https://doi.org/10.1063/1.2798256
  41. Y. P. Wang, G. L. Yuan, X. Y. Chen, J. M. Liu, and Z. G. Liu. "Electrical and Magnetic Properties of Single-phased and Highly Resistive Ferroelectromagnet $BiFeO_3$ Ceramic," J. Phys. D: Appl. Phys., 39 [10] 2019-23 (2006). https://doi.org/10.1088/0022-3727/39/10/006
  42. A.K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, "Magnetic and Electrical Properties of Single-phase Multiferroic $BiFeO_3$," J. Appl. Phys., 97 [9] 093903-4 (2005). https://doi.org/10.1063/1.1881775
  43. Y. Du, Z. X. Cheng, M. Shahbazi, E. W. Collings, A. X. Dou, and X. L. Wang, "Enhancement of Ferromagnetic and Dielectric Properties In Lanthanum Doped $BiFeO_3$ by Hydrothermal Synthesis. J. Alloys Compd., 490 [1-2] 637-41 (2010). https://doi.org/10.1016/j.jallcom.2009.10.124
  44. G. L. Yuan and S. W. Or. "Multiferroicity in Polarized Single- phase $Bi_{0.875}Sm_{0.125}FeO_3$ Ceramics," J. Appl. Phys., 100 [2] 024109-5 (2006). https://doi.org/10.1063/1.2220642
  45. R. K. Mishra, D. K. Pradhan, R. N. P. Choudhary, A. Banerjee, "Effect of Yttrium on Improvement of Dielectric Properties and Magnetic Switching Behavior in $BiFeO_3$," J. Phys.: Condens. Matter., 20 [4] 45-218 (2008).

피인용 문헌

  1. Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.04