DOI QR코드

DOI QR Code

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma

RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성

  • Ko, Sang-Min (Korea Institute of Ceramic Engineering and Technology) ;
  • Koo, Sang-Man (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Korea Institute of Ceramic Engineering and Technology)
  • 고상민 (한국세라믹기술원 이천분원) ;
  • 구상만 (한양대학교 화학공학과) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원)
  • Received : 2012.07.05
  • Accepted : 2012.09.12
  • Published : 2012.11.30

Abstract

Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

Keywords

References

  1. M. Pierre., "Silicon Carbide and Silicon Carbide-based Structures: the Physics of Epitaxy," Surf. Sci. Rep., 48 1-51 (2002). https://doi.org/10.1016/S0167-5729(02)00099-7
  2. Q. G. Fu, H. J. Li, X. H. Shi, K. Z. Li, and G.. D. Sun., "Silicon Carbide Coating to Protect Carbon/carbon Composites Against Oxidation," Scripta Mater., 52 923-27 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.029
  3. B. G. Ravi, O. A. Omotoye, T. S. Srivatsan, M. Petrorali, and T. S. Sudarshan, "The Microstructure and Hardness of Silicon Carbide Synthesized by Plasma Pressure Compaction," J. Alloys Compd., 299 292-96 (2009).
  4. A. Chrysanthou and P. Grieveson, "Formation of Silicon Carbide Whiskers and Their Microstructure," J. Mater. Sci., 26 3463-76 (1991). https://doi.org/10.1007/BF00557132
  5. D. K. Kim, S. Park, K. Cho, and H. B. Lee, "Synthesis of SiC by Self-Propagating High Temperature Synthesis Chemical Furnace (in Korean)," J. Kor. Ceram. Soc., 31 [11] 1283-92 (1994).
  6. I. N. Kholmanov, A. Kharlamov, E. Barborini, C. Lenardi, A. Li Bassi, C. E. Bottani, C. Ducati, S. Maffi, N.V. Kirillova, P. Milani, and J. Nanosci, "A Simple Method for the Synthesis of Silicon Carbide Nanorods," J. Nanosci. Nanotech., 2 [5] 453-56 (2002). https://doi.org/10.1166/jnn.2002.127
  7. S. M. Ko, S. M Koo, J. H. Kim, J. H. Kim, M. S. Byeon, and K. T. Hwang, "Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma," J. Kor. Ceram. Soc., 48 [1] 1-5 (2011). https://doi.org/10.4191/KCERS.2011.48.1.001
  8. N. Kobayashi, Y. Kawakami, K. Kamada, J. G. Li, R. Ye, T. Watanabe, and T. Ishigaki, "Spherical Submicron-size Copper Powders Coagulated from a Vapor Phase in RF Induction Thermal Plasma," Thin Solid Films, 516 4402-6 (2008). https://doi.org/10.1016/j.tsf.2007.10.064
  9. M. Leparoux, Y. Kihn, S. paris, and Schreuders, "Microstructure Analysis of RF Plasma Synthesized TiCN Nanopowders," International J. Refractory Metals Hard Mater., 26 277-85 (2008). https://doi.org/10.1016/j.ijrmhm.2007.06.003
  10. T. Ishigaki, S. M. Oh, J. G. Li, and D. W. Park, "Controlling the Synthesis of TaC Nanopowders by Injecting Liquid Precursor into RF Induction Plasma," Sci. Tech. Adv. Mater., 6 111-8 (2005). https://doi.org/10.1016/j.stam.2004.11.001
  11. R. Ye, J. G. Li, and Ishigaki, "Controlled Synthesis of Alumina Nanoparticles using Inductively Coupled Thermal Plasma with Enhanced Quenching," Thin Solid Films, 515 4251-57 (2007). https://doi.org/10.1016/j.tsf.2006.02.050
  12. Z. Karoly, J. Szepvolgyi, and Z. Farkas, "Simultaneous Calcinations and Spheroidization of Fibbsite Powders in an RF Thermal Plasma," Powder Technology, 110 169-78 (2000). https://doi.org/10.1016/S0032-5910(99)00195-3
  13. L. Shi, H. Zhao, Y. Yan, Z. Li, and C. Tang, "Synthesis and Characterization of Submicron Silicon Carbide Powders with Silicon and Phenolic Resin," Powder Technology, 169 71-6 (2006). https://doi.org/10.1016/j.powtec.2006.08.003
  14. L. R. Tong and R. G. Reddy, "Synthesis of Titanium Carbide Nanopowders by Thermal Plasma," Scripta Mater., 52 1253-58 (2005). https://doi.org/10.1016/j.scriptamat.2005.02.033
  15. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, p. 634, Wiley, New York, 1974.
  16. J. Szepvolgyi, I. Mohai, Z. Karoly, and L, Gal, "Synthesis of Nano Sized Ceramic Powders in a Radio Frequency Thermal Plasma Reactor," J. Eur. Ceram. Soc., 28 895-99 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.034

Cited by

  1. Microwave Plasma Synthesis of Materials—From Physics and Chemistry to Nanoparticles: A Materials Scientist’s Viewpoint vol.2, pp.3, 2014, https://doi.org/10.3390/inorganics2030468
  2. Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.447
  3. Effect of Hydrogen Ratio and Tin Addition on the Coke Formation of Platinum Catalyst for Propane Dehydrogenation Reaction vol.22, pp.2, 2016, https://doi.org/10.7464/ksct.2016.22.2.082
  4. Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.02