DOI QR코드

DOI QR Code

Thermal Conducting Behavior of Composites of Conjugated Short Fibrous-SiC Web with Different Filler Fraction

짧은 섬유상간의 접합을 가진 Silicon Carbide Web 복합재료의 분율별 열전도 거동

  • Kim, Tae-Eon (New Energy and Battery Engineering, Yonsei University) ;
  • Bae, Jin Chul (Division of Nano IT Convergence Center and Eco-composite Center, KICET) ;
  • Cho, Kwang Yeon (Division of Nano IT Convergence Center and Eco-composite Center, KICET) ;
  • Lee, Dong Jin (Division of Nano IT Convergence Center and Eco-composite Center, KICET) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김태언 (연세대학교 신에너지전지융합기술 협동과정) ;
  • 배진철 (한국세라믹기술원 나노 IT 융합센터 에코복합센터) ;
  • 조광연 (한국세라믹기술원 나노 IT 융합센터 에코복합센터) ;
  • 이동진 (한국세라믹기술원 나노 IT 융합센터 에코복합센터) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Received : 2012.03.19
  • Accepted : 2012.06.21
  • Published : 2012.11.30

Abstract

Silicon carbide(SiC) exhibits many unique properties, such as high strength, corrosion resistance, and high temperature stability. In this study, a SiC-fiber web was prepared from polycarbosilane(PCS) solution by employing the electrospinning process. Then, the SiC-fiber web was pyrolyzed at $1800^{\circ}C$ in argon atmosphere after it was subjected to a thermal curing. The SiC-fiber web (ground web)/phenolic resin (resol) composite was fabricated by hot pressing after mixing the SiC-fiber web and the phenolic resin. The SiC-fiber web composition was controlled by changing the fraction of filler (filler/binder = 9:1, 8:2, 7:3, 6:4, 5:5). Thermal conductivity measurement indicates that at the filler content of 60%, the thermal conductivity was highest, at 6.6 W/mK, due to the resulting structure formed by the filler and binder being closed-packed. Finally, the microstructure of the composites of SiC-fiber web/resin was investigated by FE-SEM, EDS, and XRD.

Keywords

References

  1. Y. Yu and X. Tang, "Ceramic Precursor Aluminum-containing Polycarbosilane : Preparation and Structure," J. Inorg. Organomet. Polym., 19 389-94 (2009). https://doi.org/10.1007/s10904-009-9284-6
  2. Y. Yu, J. Tai, X. Tang, Y. Guo, M. Tang, and X. Li, "Continuous Si-C-O-Al Fiber Derived from Aluminum-containing Polycabosilane Precursor," Compos. A., 39 1101-105 (2008). https://doi.org/10.1016/j.compositesa.2008.04.008
  3. H. A. Liu and K. J. Balkus Jr, "Electrospinning of Beta Silicon Carbide Nanofibers," Mater. Lett., 63 2361-64 (2009). https://doi.org/10.1016/j.matlet.2009.08.009
  4. Y. Yu, X. Tang, and X. Li, "Characterization and Microstructural Evolution of SiC(OAl) Fibers to SiC(Al) Fibers Derived from Aluminum-containing Polycabosilane," Compos. Sci. Technol., 68 1697-703 (2008). https://doi.org/10.1016/j.compscitech.2008.02.010
  5. P. H. Kang, J. P. Jeun, D. K. Seo, and Y. C. Nho, "Fabrication of SiC Mat by Radiation Processing," Radiat. Phys. Chem., 78 493-95 (2009). https://doi.org/10.1016/j.radphyschem.2009.03.033
  6. B. M. Eick and J. P. Youngblood, "SiC Nanofibers by Pyrolysis of Electrospun Preceramic Polymers," J. Mater. Sci., 44 160-65 (2009). https://doi.org/10.1007/s10853-008-3102-3
  7. A. R. Bunsell and A. Piant, "A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibres," J. Mater. Sci., 41 823-39 (2006). https://doi.org/10.1007/s10853-006-6566-z
  8. G. R. Hopkins and J. Chin, "SiC Matrix/SiC Fiber Composite : A High-Heat Flux, Low Activation, Structural Material," J. Nuclear Mater., 141-43 148-51 (1986). https://doi.org/10.1016/S0022-3115(86)80025-3
  9. H. Y. Ng, X. Lu, and S. K. Lau, "Thermal Conductivity of Boron Nitride-Filled Thermoplastics : Effect of Filler Characteristics and Composite Processing Conditions," Polym. Compos., 26 778-92 (2005). https://doi.org/10.1002/pc.20151
  10. W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, "Thermal Conductivity of Boron Nitride Reinforced Polyethylene Composites," Mater. Res. Bull., 42 1863-73 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047
  11. G. Droval, J. F. Feller, P. Salagnac, and P. Glouannec, "Thermal Conductivity Enhancement of Electrically Insulating Syndiotactic Poly(styrene) Matrix for Diphasic Conductive Polymer Composites," Polym. Adv. Technol., 17 732-45 (2006). https://doi.org/10.1002/pat.777
  12. R. A. Hauser, J. A. King, R. M. Pagel, and J. M. Keith, "Effects of Carbon Fillers on the Thermal Conductivity of Highly Filled Liquid-Crystal Polymer Based Resins," J. Appl. Polym. Sci., 109 2145-55 (2008). https://doi.org/10.1002/app.27934
  13. E. H. Weber, M. L. Clingerman, and J. A. King, "Thermally Conductive Nylon 6,6 and Polycarbonate Based Resins. I. Synergistic Effects of Carbon Fillers," J. Appl. Polym. Sci., 88 112-22 (2003). https://doi.org/10.1002/app.11571
  14. Y. Agari, A. Ueda, and S. Nagai, "Thermal Conductivity of a Polymer Composite," J. Appl. Polym. Sci., 49 1625-34 (1993). https://doi.org/10.1002/app.1993.070490914
  15. D. G. Shin, D. H. Riu, and H. E. Kim, "Web-type Silicon Carbide Fibers Prepared by the Electrospinning of Polycarbosilanes," J. Ceram. Process. Res., 9 209-14 (2008).
  16. D. Li, J. T. McCann, and Y. Xia, "Electrospinning : A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes," J. Am. Ceram. Soc., 89 [6] 1861-69 (2006). https://doi.org/10.1111/j.1551-2916.2006.00989.x
  17. G. H. Lee, I. T. Jung, S. H. Shim, and K. B. Yoon, "Fabrications and Applications of Core/Sheath, Hollow and Nanoporous Structured Nanofibers by Electrospinning," Technol. Polym. Sci., 19 [1] 25-34 (2008).
  18. A. Greiner and J. H. Wendorff, "Electrospinning : A Fascinating Method for the Preparation of Ultrathin Fibers," Ange. Chem. Int. Ed., 46 5670-703 (2007). https://doi.org/10.1002/anie.200604646
  19. G. W. Lee, M. Park, J. K. Kim, J. I. Lee, and H. G. Yoon, "Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler," Compos. A., 37 727-34 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006
  20. G. L. Harris, "Properties of Silicon Carbide," pp.5-6, the Institution of Electrical Engineers, London, 1995.
  21. M. L. Clingerman, E. H. Weber, J. A. King, and K. H. Schulz "Development of an Additive Equation for Predicting the Electrical Conductivity of Carbon-Filled Composites," J. Appl. Polym. Sci., 88 2280-99 (2003). https://doi.org/10.1002/app.11938
  22. G. Chen, "Thermal Conductivity and Ballistic-phonon Transport in the Cross-plane Direction of Superlattices," Am. Phys. Soc., 57 [23] 163-1829 (1998).
  23. G. Pezzotti, A. Nakahira, and M. Tajika, "Effect of Extended Annealing Cycles on the Thermal Conductivity of AlN/Y2O3 Ceramics," J. Euro. Ceram. Soc., 20 1319-25 (2000). https://doi.org/10.1016/S0955-2219(99)00286-1
  24. P. Huang, J. H. Huang, and J. Lin, "An Instruction to High Thermal Conductive Materials," pp. 1-4, Microsystems Packaging Assembly and Circuits Technology Conference, Taipei, 2010.