DOI QR코드

DOI QR Code

Machinable Ceramics Made by the Reaction Sintering of PSZ, Al2O3 and TiO2

PSZ, Al2O3, TiO2를 반응소결하여 제조한 쾌삭(快削) 세라믹스

  • Park, Jeong Hyun (Department of Materials and Components Engineering, Dongeui University) ;
  • Jung, Dong Sik (Department of Materials and Components Engineering, Dongeui University) ;
  • Lee, Won Jae (Department of Materials and Components Engineering, Dongeui University) ;
  • Kim, Il Soo (Department of Materials and Components Engineering, Dongeui University)
  • 박정현 (동의대학교 융합부품공학과) ;
  • 정동식 (동의대학교 융합부품공학과) ;
  • 이원재 (동의대학교 융합부품공학과) ;
  • 김일수 (동의대학교 융합부품공학과)
  • Received : 2012.06.28
  • Accepted : 2012.08.08
  • Published : 2012.11.30

Abstract

Machinability is important in engineering applications, especially in the current micro-electronics industry. Most ceramic components have complex shapes and hence require machining generally with diamond tools, which incurs a high production cost. Recently, h-BN-containing machinable ceramics have been developed, but these materials are very expensive due to the high raw materials and production costs. Therefore, the development of low-cost machinable ceramics is necessary. In this study, inexpensive $Al_2TiO_5$ was studied as a replacement for h-BN. $Al_2O_3$, $TiO_2$ and partially stabilized $ZrO_2$(PSZ) powders were mixed with various mole ratios and were sintered at $1500^{\circ}C$ for 1 h. The density, hardness and strength were then measured. The phase analysis and microstructures were observed by XRD and SEM, respectively. The machinability of each specimen was tested by micro-hole machining. The results of this research showed that the produced composites could be used as low-cost machinable ceramics.

Keywords

References

  1. P. Blake, T. Bifano, T. Dow, and R. O. Scattergood, "Precision Machining of Ceramic Materials," Ceram. Bull., 67 [6] 1038-43 (1988).
  2. C. K. Chyung, G. H. Beall, and D. G. Grossman, "Microstructure and Mechanical Properties of Mica Glass-Ceramics," pp. 1167-1194 in 10th Int. Congress on Glass. Ed. by M. Kunugi e.a. Kyoto, 1974.
  3. B. Ashouri Rad and P. Alizade, "Pressureless Sintering and Mechanical Properties of $SiO_2-Al_2O_3-MgO-K_2O-TiO_2-F(CaO-Na_2O)$ Machinable Glass-ceramics," Ceram. Int., 35 2775-80 (2009). https://doi.org/10.1016/j.ceramint.2009.03.027
  4. S. Taruta, R. Fujisawa, and K. Kitajima, "Preparation and Mechanical Properties of Machinable Alumina/Mica Composites," J. Eur. Ceram. Soc., 26 1687-93 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.258
  5. Y. Li, G. Quio, and Z. Jin, "Machinable $Al_2O_3$-BN Composite Ceramics with Strong Mechanical Properties," Mater. Res. Bull., 37 1401-9 (2002). https://doi.org/10.1016/S0025-5408(02)00786-9
  6. H. Wu and W. Zhang, "Fabrication and Properties of $ZrB_2$- SiC-BN Machinable Ceramics," J. Eur. Ceram. Soc., 30 1035-42 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.022
  7. A. A. Buchheit, G. E. Hilmas, W. G. Fahrenholtz, D. M. Deason, and H. Wang, "Mechanical and Thermal Properties of AlN-BN-SiC Ceramics," Mater. Sci. & Eng. A, 494 239-46 (2008). https://doi.org/10.1016/j.msea.2008.05.051
  8. S. Y. Beck, M. W. Cho, and W. S. Cho, "Mechanical Properties and End-Milling Characteristics of AlN-hBN Based Machinable Ceramics (in Korean)," J. Kor. Ceram. Soc., 45 [1] 75-81 (2008). https://doi.org/10.4191/KCERS.2008.45.1.075
  9. Y. S. Yoon, J. H. Lee, W. S. Cho, M. W. Cho, and E. S. Lee, "Mechanical Properties and Machinability of Machinable Ceramics(in Korean)," Ceramist, 6 [3] 12-7 (2003).
  10. Y. Li, J Zhang, G. Quio, and Z. Jin, "Fabrication and Properties of Machinable 3Y-$ZrO_2$/BN Nanocomposites," Mater. Sci. Eng. A, 397 35-40 (2005). https://doi.org/10.1016/j.msea.2005.01.038
  11. X. Zhang, R. Zhang, G. Chen, and W. Han, "Microstructure, Mechanical Properties and Thermal Shock Resistance of Hot-pressed $ZrO_2$(3Y)-BN Composites," Mater. Sci. Eng. A, 497 195-99 (2008). https://doi.org/10.1016/j.msea.2008.06.038
  12. T. Yamaguchi, "Technology of Characterization to Ceramics( in Jpn.)," Ceramics, 19 [6] 520-29 (1984).
  13. H. A. J. Thomas and R. Stevens "Aluminium Titanate - A Literature Review," Br. Ceram Trans. J., 88 144-51 (1989).
  14. I. J. Kim and C. Zografou, "Thermal Shock Resistance of $Al_2TiO_5$ Ceramics Prepared from Electrofused Powders," J. Kor. Ceram. Soc., 35 [10] 1061-69 (1998).
  15. I. J. Kim, H. B. Lee, and Y. S. Ko, "Application of $Al_2TiO_5$ Ceramics to Automobile Engine(in Korean)," Ceram. Tech., 10 [1] 68-75 (1995).
  16. I. J. Kim, H. B. Lee, and Y. S. Ko, "Application of $Al_2TiO_5$ Ceramics to High Temperature Structural Material Industry( in Korean)," Ceram. Tech., 10 [3] 283-88 (1995).
  17. J. H. Park, W. J. Lee, and I. S. Kim, "$Al_2TiO_5$-machinable Ceramics Made by Reactive Sintering of $Al_2O_3$ and $TiO_2$," J. Kor. Ceram. Soc., 47 [6] 498-502 (2010). https://doi.org/10.4191/KCERS.2010.47.6.498
  18. S.-Y. Park, S.-W. Jung, and Y.-B. Chung, "The Effect of Starting Powder on the Microstructure Development of Alumina- Aluminium Titanate Composites," Ceram. Int., 29 707-12 (2003). https://doi.org/10.1016/S0272-8842(02)00221-3
  19. M.-H. Berger and A. Sayir, "Directional Solidification of $Al_2O_3-Al_2TiO_5$ System," J. Eur. Ceram. Soc., 28, 2411-19 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.03.005
  20. T. Shimada, M. Mizuno, K. Katou, Y. Nurishi, M. Hashiba, O. Sakurada, D. Mizuno, and T. Ono, "Aluminium Titanate- Tetragonal Zirconia Composite with Low Thermal Expansion and High Strength Simultaneously," Solid State Ionics, 101-10 1127-33 (1997).
  21. S. W. Kim, H. J. Lee, and H. L. Lee, "Effects of MgO and $SiO_2$ on Thermal Decomposition of $Al_2TiO_5$," J. Kor. Ceram. Soc., 36 [4] 425-31 (1999).
  22. S. W. Kim, H. J. Lee, and H. L. Lee, "Effects of Bicomponent Additives on Thermal Decomposition of $Al_2TiO_5$," J. Kor. Ceram. Soc., 36 [6] 632-39 (1999).
  23. F. J. Parker, "$Al_2TiO_5-ZrTiO_4-ZrO_2$ Composites: A New Family of Low-thermal-expansion Ceramics," J. Am. Ceram. Soc., 73 [4] 929-32 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05138.x
  24. I. J. Kim, H. C. Kim, K. S. Lee, and I. S. Han, "Grain Boundary Microcracking in $ZrTiO_4-Al_2TiO_5$ Ceramics Induced by Thermal Expansion Anistropy," J. Kor. Ceram. Soc., 40 [2] 109-12 (2003). https://doi.org/10.4191/KCERS.2003.40.2.109
  25. H. C. Kim, K. S. Lee, and O. S. Kweon, C. G. Aneziris, and I. J. Kim, "Crack Healing, Reopening and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics at High Temperature," J. Eur. Ceram. Soc., 27 1431-34 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.024
  26. K. C. Radford and R. J. Bratton, "Zirconia Electrolyte Cells: Part I. Sintering Studies," J. Mater. Sci., 14 59-65 (1979) https://doi.org/10.1007/BF01028328
  27. R. Raj, "Fundamental Research in Structural Ceramics for Service Near $2000^{\circ}C$," J. Am. Ceram. Soc., 76 [9] 2147-74 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb07750.x
  28. S. Bueno, L. Micele, C. Baudin, and G. de Portu, "Reduced Strength Degradation of Alumina-Aluminium Titanate Composite Subjected to Low-velocity Impact Loading," J. Eur. Ceram. Soc., 28 2923-31 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.04.024
  29. A. S. Berezhnoi and N. V. Gul'ko, "Primary Phases in System $Al_2O_3-TiO_2-ZrO_2$"; Fig. 774, pp. 262 in Phase Diagrams for Ceramists, Ed. by E. M. Levin, C. R. Robbins, H. F. McMurdie and M. K. Reser, The Am. Ceram. Soc., Columbus, Ohio, 1969.

Cited by

  1. vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.372
  2. Fabrication and Machinability of Mullite-ZrO2-Al2TiO5 Ceramics vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.423