DOI QR코드

DOI QR Code

가압-진공 하이브리드 주입성형에 의한 알루미나의 균질 성형

Homogeneous Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting

  • 조경식 (금오공과대학교 신소재시스템공학부) ;
  • 송인범 (금오공과대학교 신소재시스템공학부) ;
  • 김재 (금오공과대학교 신소재시스템공학부)
  • Cho, Kyeong-Sik (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Song, In-Beom (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jae (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology)
  • 투고 : 2012.07.17
  • 심사 : 2012.08.06
  • 발행 : 2012.11.30

초록

Conventional methods for preparing ceramic bodies, such as cold isostatic pressing, gypsum-mold slip casting, and filter pressing are not completely suitable for fabricating large and thick ceramic plates owing to disadvantages of these processes, such as the high cost of the equipment, the formation of density gradients, and differential shrinkage during drying. These problems can be avoided by employing a pressure-vacuum hybrid slip casting approach that considers not only by the compression of the aqueous slip in the casting room (pressure slip casting) but also the vacuum sucking of the dispersion medium (water) around the mold (vacuum slip casting). We prepared the alumina formed bodies by means of pressure-vacuum hybrid slip casting with stepwise pressure loading up to 0.5 MPa using a slip consisting of 40 vol% solid, 0.6 wt% APC, 1 wt% PEG, and 1 wt% PVA. After drying the green body at $30^{\circ}C$ and 80% RH, the green density of the alumina bodies was about 56% RD. The sintered density of an alumina plate created by means of sintering at $1650^{\circ}C$ for 4 h exceeded 99.8%.This method enabled us to fabricate a $110{\times}110{\times}20$ mm alumina plate without cracks and with a homogeneous density, thus demonstrating the possibility of extending the method to the fabrication of other ceramic products.

키워드

참고문헌

  1. K. Masaki, N. Hisao, and K. Yuraka, "Large-sized Alumina Products for Next Generation LCD (Liquid Crystal Display) Manufacturing(in Jpn)," Shinagawa Technical Report, 48 139-40 (2005).
  2. H. K. Lee, K. S. Cho, M. H. Jang, C. W. Jang, S. M. Kim, and M. Y. Kim, "Characteristics of Large Green and Sintered Alumina Ceramics by Filter Pressing," J. Kor. Ceram. Soc., 46 [3] 306-12 (2009). https://doi.org/10.4191/KCERS.2009.46.3.306
  3. R. S. Reed, Principles of Ceramic Processing, 2nd ed., Wiley Interscience, New York, 1995.
  4. M. N. Rahaman, Ceramic Processing and Sintering, 2nd ed., Marcel Dekker, New York, 2003.
  5. A. Salomoni, I. Stamenkovic, S. M. Castanhob, and R. Morenob, "Pressure Filtration of $Si_3N_4$," J. Eur. Ceram. Soc., 17 267-71 (1997). https://doi.org/10.1016/S0955-2219(96)00104-5
  6. E. G. Blanchard, "Pressure Casting Improves Productivity," Am. Ceram. Bull., 67 [10] 1680-83 (1988).
  7. T. Uchikoshi, Y. Sakka, K. Ozawa, and K. Hiraga, "Pressure Filtration and Sintering of Fine Zirconia Powder," J. Eur. Ceram. Soc., 18 669-74 (1998). https://doi.org/10.1016/S0955-2219(97)00171-4
  8. K. Matsushima, Y. Hirata, N. Matsunaga, and S. Sameshima, "Pressure Filtration of Alumina Suspensions under Alternating Current Field," Coll. Surf. A: Physicochem. Eng. Asp., 364 138-44 (2010). https://doi.org/10.1016/j.colsurfa.2010.05.008
  9. K. Kendall and M. R. Kosseva, "Nanoparticle Aggregation Influenced by Magnetic Fields," Coll. Surf. A: Physicochem. Eng. Asp., 286 112-16 (2006). https://doi.org/10.1016/j.colsurfa.2006.03.010
  10. J. A. Lewis, "Colloidal Processing of Ceramics," J. Am. Ceram. Soc., 83 [10] 2341-59 (2000).
  11. G. Tari, J. M. F. Ferreira, and O. Lyckfeldt, "Influence of the Stabilizing Mechanism and Solid Loading on Slip Casting of Alumina," J. Eur. Ceram. Soc., 18 [5] 479-86 (1998). https://doi.org/10.1016/S0955-2219(97)00159-3
  12. S. Biggs, M. Habgood, G. J. Jameson, and Y.-D. Yanb, "Aggregate Structures Formed via a Bridging Flocculation Mechanism," Chem. Eng. J., 80 [1-3] 13-22 (2000). https://doi.org/10.1016/S1383-5866(00)00072-1
  13. J. L. Burns, Y.-D. Yan, G. J. Jameson, and S. Biggs, "Relationship between Interaction Forces and the Structural Compactness of Depletion Flocculated Colloids," Coll. Sur. A: Physiochem. Eng. Asp., 162 [1-3] 265-77 (1999).
  14. W. C. J. Wei and C. L. Hsieh, "Drying Kinetics of Ultrafine Alumina Cake with Drying Control Chemical (DCC)," J. Ceram. Soc. Jpn., 107 [4] 313-17 (1999). https://doi.org/10.2109/jcersj.107.313
  15. G. Tari and J. M. F. Ferreira, "Influence of Solid Loading on Drying-shrinkage Behaviour of Slip Cast Bodies," J. Eur. Ceram. Soc., 18 [5] 487-93 (1998). https://doi.org/10.1016/S0955-2219(97)00161-1
  16. G. W. Scherer, "Theory of Drying," J. Am. Ceram. Soc., 73 [1] 3-14 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05082.x
  17. J. D. Yates and S. J. Lombardo, "Effect of Solids Loading and Dispersant Concentration on Strain Mismatch and Deformation of Slip-Cast Green Bodies," J. Am. Ceram. Soc., 84 [10] 2274-80 (2001).
  18. J. D. Yates and S. J. Lombardo, "The Effect of Plaster Composition and Binder Concentration on Strain Mismatch and Deformation of Slip-cast Green Bodies," Mater. Sci., Eng., A337 297-305 (2002). https://doi.org/10.1016/S0921-5093(02)00049-7
  19. J. L. Amoros, E. Sanchez, V. Cantavella, and J. C. Jarque, "Evolution of the Mechanical Strength of Industrially Dried Ceramic Tiles during Storage," J. Eur. Ceram. Soc., 23 [11] 1839-45 (2003). https://doi.org/10.1016/S0955-2219(02)00425-9
  20. D. Y. Hong, S. C. Byeon, H. J. Je, and K. S. Hong, "Dependence of Compaction Behavior of Spray-Dried Ferrite Powders on the Kinds and Concentrations of Binder Systems," J. Kor. Ceram. Soc., 32 [9] 1047-55 (1995).
  21. S. Wang, Q. H. Wang, X. L. Yang, L. Y. Wang, and H. S. Zhu, "Properties of Silk Fibroin/Poly(ethylene glycol)400 Blend Films," Chi. J. Polymer Sci., 21 [1] 87-91 (2003).
  22. J. Bozi, Z. Czegeny, E. Meszaros, and M. Blazso, "Thermal Decomposition of Flame Retarded Polycarbonates," J. Anal. Appl. Pyrolysis, 79 337-45 (2007). https://doi.org/10.1016/j.jaap.2007.01.001
  23. S. W. Kim, H. W. Lee, H. S. Song, and B. H. Kim, "Pore Structure Evolution during Solvent Extraction and Wicking," Ceram. Int., 22 7-14 (1996). https://doi.org/10.1016/0272-8842(95)00025-9
  24. S. W. Kim, H. W. Lee, and H. S. Song, "Effect of Minor Binder on Capillary Structure Evolution during Wicking," Ceram. Int., 25 671-76 (1999). https://doi.org/10.1016/S0272-8842(98)00082-0

피인용 문헌

  1. Fabrication of Large-Size Alumina by Pressure-Vacuum Hybrid Slip Casting vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.396
  2. Correlation between Acoustic Intensity and Ground Particle Size in Alumina Ball Mill Process vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.06
  3. 가압-진공 하이브리드 주입 성형에 의한 알루미나의 성형에 미치는 다단 가압의 영향 vol.50, pp.2, 2012, https://doi.org/10.4191/kcers.2013.50.2.142
  4. Effect of Multi-Sized Powder Mixture on Solid Casting and Sintering of Alumina vol.55, pp.4, 2012, https://doi.org/10.4191/kcers.2018.55.4.01
  5. Reducing the density deviation in alumina by pressure-vacuum hybrid slip casting by employing powders with different particle sizes vol.8, pp.2, 2012, https://doi.org/10.1080/21870764.2020.1749372