DOI QR코드

DOI QR Code

Identification and Characterization of Expansins from Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae)

  • Lee, Dae-Weon (Department of Biology, Kyungsung University) ;
  • Seo, Jong Bok (Seoul Center, Korea Basic Science Institute) ;
  • Kang, Jae Soon (Division of Forest Insect Pests & Diseases, Korea Forest Research Institute) ;
  • Koh, Sang-Hyun (Division of Forest Insect Pests & Diseases, Korea Forest Research Institute) ;
  • Lee, Si-Hyeock (Department of Agricultural Biotechnology, Seoul National University) ;
  • Koh, Young Ho (Ilsong Institute of Life Science, Hallym University)
  • Received : 2012.08.07
  • Accepted : 2012.08.16
  • Published : 2012.12.01

Abstract

We identified two novel expansin (EXP) genes in the expressed sequence tag database of Bursaphelenchus xylophilus, designated as Bx-EXPB2 and -EXPB3. Novel Bx-EXPBs encoded 150 amino acids and their similarities in coding sequence were 70.7-84.0% to the previously reported EXPB1 of B. xylophilus. Bx-EXPB2 and Bx-EXPB3 were clustered with Bx-EXPB1 and Bm-EXPB1, respectively, forming the independent phylogeny with other nematode EXPs. All identified Bx-EXPBs contained the signal peptide and were only expressed during the propagative stage, suggesting that they are secreted to facilitate nematode migration through hosts by loosening cell walls during infection. Quantitative real-time PCR analysis showed that the relative accumulation of Bx-EXPB3 mRNAs was the highest among the three Bx-EXPs examined and the order of mRNA accumulation was as follows: Bx-EXPB3 > Bx-EXPB2 >> Bx-EXPB1. Homology modeling of Bx-EXPBs showed that the structurally optimum template was EXLX1 protein of Bacillus subtilis, whichshared residues essential for catalytic activity with Bx-EXPB1 and Bx-EXPB2 except for Bx-EXPB3. Taken together, Bx-EXPB1 and Bx-EXPB2 may be involved migration through plant tissues and play a role in pathogenesis.

Keywords

References

  1. Abad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G. J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., Caillaud, M.-C., Coutinho, P. M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J. V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T.R., Markov, G. V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Sgurens, B., Steinbach, D., Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T. J., Blaxter, M., Bleve-Zacheo, T., Davis, E. L., Ewbank, J. J., Favery, B., Grenier, E., Henrissat, B., Jones, J. T., Laudet, V., Maule, A. G., Quesneville, H., Rosso, M.-N., Schiex, T., Smant, G., Weissenbach, J. and Wincker, P. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnol. 26:909-915. https://doi.org/10.1038/nbt.1482
  2. Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
  3. Benkert, P., Knzli, M. and Schwede, T. 2009. QMEAN server for protein model quality estimation. Nucleic Acids Res. 37: W510-514. https://doi.org/10.1093/nar/gkp322
  4. Chen, Z., Chen, S. and Dickson, D. W. 2006. Nematode behaviour and migration through soil and host tissues. Tsinghua University Press, Beijing.
  5. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.
  6. Cosgrove, D. J. 1997. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlarge ment. Plant Cell 9:1031-1041. https://doi.org/10.1105/tpc.9.7.1031
  7. Cosgrove, D. J. 2000. Expansive growth of plant cell walls. Plant Physiol. Biochem. 38:109-124. https://doi.org/10.1016/S0981-9428(00)00164-9
  8. Futai, K. 1980. Population dynamics of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) and B. mucronatus in pine seedlings. Appl. Entom. Zool. 15:458-464. https://doi.org/10.1303/aez.15.458
  9. Georgelis, N., Tabuchi, A., Nikolaidis, N. and Cosgrove, D. J. 2011. Structure-function analysis of the bacterial expansin EXLX1. J. Biol. Chem. 286:16814-16823. https://doi.org/10.1074/jbc.M111.225037
  10. Haegeman, A., Kyndt, T. and Gheysen, G. 2010. The role of pseudo-endoglucanase in the evolution of nematode cell wallmodifying proteins. J. Mol. Evol. 70:441-452. https://doi.org/10.1007/s00239-010-9343-1
  11. Haegeman, A., Jones, J. T. and Danchin, E. G. J. 2011. Horizontal Gene Transfer in Nematodes: A Catalyst for Plant Parasitism? Mol. Plant-Microbe Interact. 24:879-887. https://doi.org/10.1094/MPMI-03-11-0055
  12. Ishibashi, N., Aoyagi, M. and Kondo, E. 1978. Comparison of the gonad development between the propagative and dispersal forms of the pinewood nematode, Bursaphelenchus lignicolus (Ahelenchoididae). Jpn. J. Nematol. 8:28-31.
  13. Jones, J. T., Furlanetto, C. and Kikuchi, T. 2005. Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology 17:641- 646.
  14. Kang, J. S., Choi, K. S., Shin, S. C., Moon, I. S., Lee, S. G. and Lee, S. H. 2004. Development of an efficient PCR-based diagnosis protocol for the identification of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Nematology 6:279-285. https://doi.org/10.1163/1568541041217915
  15. Kang, J. S., Lee, H., Moon, I. S., Lee, Y., Koh, Y. H., Je, Y. H., Lim, K.-J. and Lee, S. H. 2009. Construction and characterization of subtractive stage-specific expressed sequence tag (EST) libraries of the pinewood nematode Bursaphelenchus xylophilus. Genomics 94:70-77. https://doi.org/10.1016/j.ygeno.2009.03.001
  16. Kaplan, W. and Littlejohn, T. G. 2001. Swiss-PDB Viewer (Deep View). Brief. Bioinform. 2:195-197. https://doi.org/10.1093/bib/2.2.195
  17. Kelley, L. A. and Sternberg, M. J. E. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protocols 4:363-371. https://doi.org/10.1038/nprot.2009.2
  18. Kerff, F., Amoroso, A., Herman, R., Sauvage, E., Petrella, S., File, P., Charlier, P., Joris, B., Tabuchi, A., Nikolaidis, N. and Cosgrove, D.J. 2008. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc. Natl. Acad. Sci. USA 105:16876-16881. https://doi.org/10.1073/pnas.0809382105
  19. Kikuchi, T., Shibuya, H., Aikawa, T. and Jones, J. T. 2006. Cloning and characterization of pectate lyases secreted by the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant- Microbe Interact. 19:280-287. https://doi.org/10.1094/MPMI-19-0280
  20. Kikuchi, T., Jones, J. T., Aikawa, T., Kosaka, H. and Ogura, N. 2004. A family of GHF45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett. 572:201-205. https://doi.org/10.1016/j.febslet.2004.07.039
  21. Kikuchi, T., Aikawa, T., Kosaka, H., Pritchard, L., Ogura, N. and Jones, J. T. 2007. Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Parasitol. 155:9-17.
  22. Kikuchi, T., Li, H., Karim, N., Kennedy, M. W., Moens, M. and Jones, J. T. 2009. Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematology 11:355-364. https://doi.org/10.1163/156854109X446953
  23. Kondo, E. and Ishibashi, N. 1978. Ultrastructural differences between the propagative and dispersal forms in pinewood nematode, Bursaphelenchus lignicolus, with reference to the survival. Appl. Entomol. Zool. 13:1-11. https://doi.org/10.1303/aez.13.1
  24. Kosaka, H., Aikawa, T., Ogura, N., Tabata, K. and Kiyohara, T. 2001. Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. Eur. J. Plant Pathol. 107:667-675. https://doi.org/10.1023/A:1011954828685
  25. Kudla, U., Qin, L., Milac, A., Kielak, A., Maissen, C., Overmars, H., Popeijus, H., Roze, E., Petrescu, A., Smant, G., Bakker, J. and Helder, J. 2005. Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode Globodera rostochiensis. FEBS Lett. 579:2451-2457. https://doi.org/10.1016/j.febslet.2005.03.047
  26. Lee, D.-W., Seo, J. B., Nam, M. H., Kang, J. S., Kim, S. Y., Kim, A. Y., Kim, W. T., Choi, J. K., Um, Y., Lee, Y., Moon, I.-S., Han, H. R., Koh, S.-H., Je, Y. H., Lim, K. J., Lee, S. H. and Koh, Y. H. 2011. A combination of biochemical and proteomic analyses reveals Bx-LEC-1 as an antigenic target for the monoclonal antibody 3-2A7-2H5-D9-F10 specific to the pine wood nematode. Mol. Cell. Proteomics 10: M900521- MCP900200.
  27. Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L. and McQueen-Mason, S. J. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128:845-864.
  28. Mamiya, Y. 1975. The life history of the pinewood nematode, Bursaphelenchus lignicolus. Jpn. J. Nematol. 5:16-25.
  29. McQueen-Mason, S. and Cosgrove, D. J. 1995. Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol. 107:87-100. https://doi.org/10.1104/pp.107.1.87
  30. McQueen-Mason, S. J. and Cosgrove, D. J. 1994. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Nat'l. Acad. Sci. USA 91:6574-6578. https://doi.org/10.1073/pnas.91.14.6574
  31. Odani, K., Sasaki, S., Yamamoto, N., Nishiyama, Y. and Tamura, H. 1985. Differences in dispersal of two associated nematodes, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus in pine seedlings in relation to the pine wilt disease development. J. Jpn. For. Soc. 67:398-403.
  32. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res. 29:2002- 2007.
  33. Popeijus, H., Overmars, H., Jones, J., Blok, V., Goverse, A., Helder, J., Schots, A., Bakker, J. and Smant, G. 2000. Degradation of plant cell walls by a nematode. Nature 406:36-37. https://doi.org/10.1038/35017641
  34. Qin, L., Kudla, U., Roze, E. H. A., Goverse, A., Popeijus, H., Nieuwland, J., Overmars, H., Jones, J. T., Schots, A., Smant, G., Bakker, J. and Helder, J. 2004. Plant degradation: A nematode expansin acting on plants. Nature 427:30. https://doi.org/10.1038/427030a
  35. Sampedro, J. and Cosgrove, D. 2005. The expansin superfamily. Genome Biology 6:242. https://doi.org/10.1186/gb-2005-6-12-242
  36. Scholl, E. H., Thorne, J. L., McCarter, J. P. and Bird, D. M. 2003. Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol. 4:R39. https://doi.org/10.1186/gb-2003-4-6-r39
  37. Smant, G., Stokkermans, J. P., Yan, Y., De Boer, J. M., Baum, T. J., Wang, X., Hussey, R. S., Gommers, F. J., Henrissat, B., Davis, E. L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95:4906-4911. https://doi.org/10.1073/pnas.95.9.4906
  38. van den Brink, J. and de Vries, R. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 91:1477-1492. https://doi.org/10.1007/s00253-011-3473-2
  39. Viglierchio, D. R. and Schmitt, R. V. 1983. On the methodology of nematode extraction from field samples: Baermann funnel modifications. J. Nematol. 15:438-444.
  40. Whitney, S. E. C., Gidley, M. J. and McQueen-Mason, S. J. 2000. Probing expansin action using cellulose/hemicellulose composites Plant J. 22:327-334. https://doi.org/10.1046/j.1365-313x.2000.00742.x
  41. Xu, B., Janson, J.-C. and Sellos, D. 2001. Cloning and sequencing of a molluscan endo-$\beta$-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur. J. Biochem. 268:3718-3727. https://doi.org/10.1046/j.1432-1327.2001.02280.x

Cited by

  1. Plant expansins: diversity and interactions with plant cell walls vol.25, 2015, https://doi.org/10.1016/j.pbi.2015.05.014
  2. Enhancing Production of Terpenoids in Metabolically Engineered Transgenic Spearmint (Mentha spicata L.) by Salt and Fungal Elicitors vol.30, pp.2, 2014, https://doi.org/10.7747/JFS.2014.30.2.243
  3. Bacterial expansins and related proteins from the world of microbes vol.99, pp.9, 2015, https://doi.org/10.1007/s00253-015-6534-0
  4. ExpansinB3 as a marker for detecting pine wood nematode-infected pine trees 2017, https://doi.org/10.1016/j.aspen.2017.08.029
  5. Development of two alternative Loop-mediated isothermal amplification tools for detecting pathogenic pine wood nematodes vol.45, pp.2, 2015, https://doi.org/10.1111/efp.12147