DOI QR코드

DOI QR Code

연직차수벽의 비정상 지하수 흐름에 대한 이론해 : 순간변위시험(slug test) 적용과 투수계수 산정

Analytical Solution for Transient Groundwater Flow in Vertical Cutoff Walls : Application of Slug Test and Evaluation of Hydraulic Conductivity

  • 투고 : 2012.02.08
  • 심사 : 2012.11.06
  • 발행 : 2012.11.28

초록

순간변위시험(slug test) 결과를 이용하여 비정상 흐름을 고려한 연직차수벽의 투수계수를 평가할 수 있는 이론해는 지금까지 제시된 바가 없다. 무한 대수층에 부분 관입된 우물(well)형상에 적용 가능하도록 기존 문헌에서 제시한 이론해는 좁은 지중연속벽체 형상의 연직차수벽의 경계조건을 고려할 수 없다. 이러한 연직차수벽 경계조건을 고려하기 위해, 본 연구에서는 가상 우물이론(imaginary well theory)을 도입하여 두 가지 경계조건(즉, 일정 수두 조건과 불투수 조건)을 만족하도록 새로운 이론해를 유도하였다. 제안된 이론해를 이용하여 구한 연직차수벽에서 시간에 따른 수위 회복 곡선(Type Curve)을 무한 대수층의 경우와 비교한 결과, 일정 수두 경계조건을 적용할 경우, 우물의 수위 회복이 무한 대수층의 결과보다 빠르게 진행되고 반면에 불투수 경계조건을 적용할 경우는 더 느리게 진행되었다. 또한, 우물의 형상비가 클수록, 연직차수벽의 폭이 좁을수록, 우물의 편심 정도가 클수록, 연직차수벽과 주변 지반 사이의 경계조건의 영향이 커진다. 본 논문에서 제시한 이론해를 통해 산정된 Type Curve는 기존 문헌에서 수치해석을 통해 산정된 Type Curve와 유사한 경향을 보였다.

No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results with consideration of transient flow. There is an analytical solution proposed to interpret a slug test performed in a partially penetrated well within an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions (i.e, constant head boundary and no flux boundary condition), the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Type curves are constructed from the currently derived analytical solution and compared with those of a partially penetrated well within an aquifer. The constant head boundary condition provides faster hydraulic head recovery curve than the aquifer case. On the other hand, no flux boundary condition leads to slower hydraulic head recovery. The bigger the shape factor and deviation of the well and the smaller the width of the vertical cutoff wall are, the more effect of boundary condition was observed. The type curves obtained from the analytical solution for a cutoff wall are similar to those made by the numerical method in the literature.

키워드

참고문헌

  1. Bear, J. (1979), Hydraulics of Ground Water, McGraw-Hill.
  2. Bouwer, H. (1989), "The Bouwer and Rice Slug Test-an Update", Ground Water, Vol.27, No.3, pp.304-309. https://doi.org/10.1111/j.1745-6584.1989.tb00453.x
  3. Bouwer, H. and Rice, R. C. (1976), "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifer with Completely or Partially Penetrating Wells", Water Resour. Res., Vol.12, No.3, pp.423-428. https://doi.org/10.1029/WR012i003p00423
  4. Britton, J. P., Filz, G. M., and Little, J. C. (2002), "Shape Factors for Single-Well Tests in Soil-Bentonite Cutoff Walls", Proc., 4th Int. Congress on Environmental Geotechnics, de Mello and Almeida, eds., pp.639-644.
  5. Butler, J. J. (1996), "Slug Tests in Situ Characterization: Some Practical Consideration", Envir. Geosciences, Vol.3, No.2, pp.154.
  6. Choi, H. (2002), Analysis of Slug Tests to Determine Hydraulic Conductivity of Vertical Cutoff Walls, Ph.D. thesis, Univ. of Illinois, Urbana-Champaign.
  7. Choi, H. (2007), "Numerical Model for Analyzing Slug Tests in Vertical Cutoff Walls", J. Geotech. Geoenviron. Eng., ASCE Vol.133, No.10, pp.1249-1258. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:10(1249)
  8. Choi, H. and Daniel, D. E. (2006a), "Slug Test Analysis in Vertical Cutoff Walls. I: Analysis Methods", J. Geotech. Geoenviron. Eng., ASCE Vol.132, No.4, pp.429-438. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(429)
  9. Choi, H. and Daniel, D. E. (2006b), "Slug Test Analysis in Vertical Cutoff Walls. II: Applications", J. Geotech. Geoenviron. Eng., ASCE Vol.132, No.4, pp.439-447. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(439)
  10. Choi, H., Nguyen, T. B., and Lee, C. (2008), "Slug Test Analysis to Evaluate Permeability of Compressible Materials", Ground Water, Vol.46, No.4, pp.647-652. https://doi.org/10.1111/j.1745-6584.2008.00453.x
  11. Conlin, B. H. and Maddock, W. P. (1985), "An Assessment of the Behavior of Foundation Clay at Tarsiut N-44 Caisson Retained Island", Proc., 17th Offshore Technol. Conf., OTC 4884, pp.379-388.
  12. Cooper, H. H., Bredehoeft, J. D., and Papadopulos, I. S. (1967), "Response of a Finite-Diameter Well to an Instantaneous Charge of Water", Water Resour. Res., Vol.3, No.1, pp.263-269. https://doi.org/10.1029/WR003i001p00263
  13. Crooks, J. H. A., Becker, D. E., Jefferies, M. G., and McKenxie, K. (1984), "Yield Behavior and Consolidation. I: Pore Pressure Response", Sedimentation consolidation models, R. N. Young and F. C. Townsend, eds., New York, pp.356-381.
  14. EMCON. (1995), M-11/15, M-17/21, and M-26/E-29 Slurry Walls Post Construction Performance Evaluation, West Contra Costa Sanitary Landfill, Richmond, Ca.
  15. Gibson, R. E., Knight, K., and Taylor, P. E. (1963), "A Critical Experiment to Examine Theories of Three-Dimensional Consolidation", Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, Wiesboden, Vol.1, pp.69-76.
  16. Henry, L. B., Filz, G. M., and Davidson, R. R. (1998). "Formation and properties of bentonite filter cakes." Proc., Filtration and Drainage in Geotechnical/ Geoenvironmental Engineering, GSP No. 78, ASCE, Reston, Va., pp.69-88.
  17. Hyder, Z. (1994), Analysis of Slug Tests in Partially Penetrating Wells, Ph.D. thesis, Univ. of Kansas, Lawrence.
  18. Hyder, Z., Butler, J. J., McElwee, C. D., and Liu, W. (1994), "Slug Tests in Partially Penetrating Wells", Water Resour. Res., Vol.30, No.11, pp.2945-2957. https://doi.org/10.1029/94WR01670
  19. Kabbaj, M., Tavanes, F., and Leroueil, S. (1988), "In Situ and Laboratory Stress-Strain Relationship", Geotechnique, London, Vol.38, pp.83-100. https://doi.org/10.1680/geot.1988.38.1.83
  20. McKinley, J. D. (1998), "Coupled Consolidation of a Solid, Infinite Cylinder Using a Terzaghi Formulation", Computers and Geotechniccs, Vol.23, pp.193-204. https://doi.org/10.1016/S0266-352X(98)00018-4
  21. Nguyen, T. B. (2007), Slug Test Analysis in Vertical Cutoff Walls with Consideration of Filter Cake, Master thesis, Korea University, Seoul, South Korea.
  22. Nguyen, T. B., Lee, C., and Choi, H. (2011), "Slug Test Analysis in Vertical Cutoff Walls with Consideration of Filter Cake", J. Geotech. Geoenviron. Eng., Vol.137, No.8, pp.785-797. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000484
  23. Nguyen, T-B, Lee, C., Choi, H., and Kim, S. (2008), "Evaluation of Hydraulic Conductivity of Slurry-wall-type Vertical Cutoff Wall with Consideration of Filter Cake", Journal of Korean Geotechnical Society(KGS), Vol.24, No.11, pp.121-131.
  24. Papadopulos, S. S., Bredehoeft, J. D., and Cooper, H. H. (1973), "On the Analysis of Slug Test Data", Water Resour. Res., Vol.9, No.4, pp.1087-1089. https://doi.org/10.1029/WR009i004p01087
  25. Schiffman, R. L., Chen, T. F. A., and Jordan, J. C. (1969), "An Analysis of Consolidation Theory", J. Soil Mech. and Found. Div., ASCE, Vol.95, No.1, pp.285-309.
  26. Teeter, R. M., and Clemence, S. P. (1986), "In-Place Permeability Measurement of Slurry Trench Cutoff Wall", Proc., In Situ' 86, Use of In Situ Tests in Geotechnical Engineering, GSP No.6, pp.1049-1061.
  27. Yang, D. S., Luscher, U., Kimoto, I., and Takeshima, S. (1993), "SMW Wall for Seepage Control in Levee Reconstruction", Proc., 3rd Int. Conf. on Case Histories in Geotechnical Engineering, pp.487-492.
  28. Yin, J. H., Clark, J. I., Blasco, B. M., and Graham, J. (1993), "Mechanism and Modeling of Abnormal Excess Pore Water Pressure in Clays and Applications in Offshore Engineering", Proc., 4th Can. Conf. Marine Geotech, Engineering, Vol.2, pp.401-424.
  29. Zhu, J. G. and Yin, J. H. (2001), "Deformation and Pore-Water Pressure Responses of Elastic Viscoplastic Soil", Journal of Engineering Mechanics, September, pp.899-908.