DOI QR코드

DOI QR Code

Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots

InAs/GaAs 양자점의 발광특성에 대한 InGaAs 캡층의 영향

  • Kwon, Se Ra (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Song, Jin Dong (Nanophotonics Research Center, Korea Institute of Science and Technology)
  • 권세라 (강원대학교 물리학과) ;
  • 류미이 (강원대학교 물리학과) ;
  • 송진동 (한국과학기술연구원 다원물질융합연구소 광전융합시스템연구단)
  • Received : 2012.09.28
  • Accepted : 2012.11.27
  • Published : 2012.11.30

Abstract

The optical properties of InAs quantum dots (QDs) grown on a GaAs substrates by migration enhanced molecular beam epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The luminescence properties of InAs/GaAs QDs have been studied as functions of temperature, excitation laser power, and emission wavelength. The PL peak of InAs QDs capped with $In_{0.15}Ga_{0.85}As$ layer (QD2) measured at 10 K is redshifted about 80 nm compared with that of InAs QDs with no InGaAs layer (QD1). This redshift of QD2 is attributed to the increase in dot size due to the diffusion of In from the InGaAs capping layer. The PL decay times of QD1 and QD2 at 10 K are 1.12 and 1.00 ns taken at the PL peak of 1,117 and 1,197 nm, respectively. The reduced decay time of QD2 can be explained by the improved carrier confinement and enhanced wave function overlap due to increased QD size. The PL decay times for both QD1 and QD2 are independent on the emission wavelength, indicating the uniformity of dot size.

Migration-enhanced molecular beam epitaxy법을 이용하여 GaAs 기판에 성장한 InAs 양자점(quantum dots: QDs)의 광학적 특성을 PL (photoluminescence)과 time-resolved PL을 이용하여 분석하였다. 시료 온도, 여기 광의 세기, 발광 파장에 따른 InAs/GaAs QDs (QD1)과 $In_{0.15}Ga_{0.85}As$ 캡층을 성장한 InAs/GaAs QDs (QD2)의 발광특성을 연구하였다. QD2의 PL 피크는 QD1의 PL 피크보다 장파장에서 나타났으며, 이것은 InGaAs 캡층의 In이 InAs 양자점으로 확산되어 양자점의 크기가 증가한 것으로 설명된다. 10 K에서 측정한 QD1과 QD2의 PL 피크인 1,117 nm와 1,197 nm에서 PL 소멸시간은 각각 1.12 ns와 1.00 ns이고, 발광파장에 따른 PL 소멸시간은 PL 피크 근처에서 거의 일정하게 나타났다. QD2의 PL 소멸시간이 QD1보다 짧은 것은 QD2의 양자점이 커서 파동함수 중첩이 향상되어 캐리어 재결합이 증가한 때문으로 설명된다.

Keywords

References

  1. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. 22, 1915 (1986). https://doi.org/10.1109/JQE.1986.1073149
  2. Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama, J. Crystal Growth 208, 93 (2000). https://doi.org/10.1016/S0022-0248(99)00466-2
  3. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, Appl. Phys. Lett. 79, 421 (2001). https://doi.org/10.1063/1.1385584
  4. A. Fiore, U. Oeserle, R. P. Stanlye, and M. Ilegems, IEEE Photon. Technol. Lett. 12, 1601 (2000). https://doi.org/10.1109/68.896320
  5. D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010). https://doi.org/10.1063/1.3309411
  6. H. W. Shin, J. W. Choe, J. O. Kim, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 20, 35 (2011). https://doi.org/10.5757/JKVS.2011.20.1.035
  7. D. Sreenivasan, J. E. M. Haverkort, T. J. Eijkemans, and R. Notzel, Appl. Phys. Lett. 90, 112109 (2007). https://doi.org/10.1063/1.2713803
  8. S. Kim, D. K. Oh, P. W. Yu, J.-Y. Leem, J. I. Lee, and C. R. Lee, J. Crystal Growth 261, 38 (2004). https://doi.org/10.1016/j.jcrysgro.2003.09.017
  9. L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films 498, 188 (2006). https://doi.org/10.1016/j.tsf.2005.07.079
  10. J. S. Kim, C.-R. Lee, and S. U. Hong, J. Crystal Growth 305, 78 (2007). https://doi.org/10.1016/j.jcrysgro.2007.03.061
  11. J. W. Oh, S. R. Kwon, M.-Y. Ryu, B. Jo, and J. S. Kim, J. Korean Vac. Soc. 20, 442 (2011). https://doi.org/10.5757/JKVS.2011.20.6.442
  12. G. G. Tarasov, Yu. I. Mazur, Z. Ya. Zhuchenko, A. Maabdorf, D. Nickel, J. W. Tomm, H. Kissel, C. Walther, and W. T. Masselink, J. Appl. Phys. 88, 7162 (2000). https://doi.org/10.1063/1.1323516
  13. Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001). https://doi.org/10.1063/1.1385579
  14. H. Y. Kim, M.-Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012). https://doi.org/10.1016/j.jlumin.2012.01.057
  15. H. J. Lee, M.-Y. Ryu, and J. S. Kim, J. Appl. Phys. 108, 093521 (2010). https://doi.org/10.1063/1.3506709
  16. H. J. Lee, M.-Y. Ryu, and J. S. Kim, J. Korean Vac. Soc. 18, 474 (2009). https://doi.org/10.5757/JKVS.2009.18.6.474
  17. N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, and J. I. Lee, Appl. Phys. Lett. 88, 133104 (2006). https://doi.org/10.1063/1.2189195
  18. V. D. Dasika, J. D. Song, W. J. Choi, N. K. Cho, J. I. Lee, and R. S. Goldman, Appl. Phys. Lett. 95, 163114 (2009). https://doi.org/10.1063/1.3243688
  19. Y. P. Varshni, Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  20. O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology New Series, III/17a (Springer, Berlin, 1982), p. 297.

Cited by

  1. Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.92
  2. Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.86