DOI QR코드

DOI QR Code

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell

영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구

  • 정주영 (한양대학교 건설환경공학과) ;
  • 김한기 (한양대학교 건설환경공학과) ;
  • 신자원 (한양대학교 건설환경공학과) ;
  • 박주양 (한양대학교 건설환경공학과)
  • Received : 2011.10.24
  • Accepted : 2011.12.28
  • Published : 2012.02.29

Abstract

Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.

질산성질소는 일반적인 지하수 오염물질로서, 본 연구에서는 영가철을 충진한 복극전해조를 이용하여 서로 다른 조건에서 질산성질소 제거실험을 수행하였다. 실험에 사용된 전해조에는 양쪽 끝에 위치한 주 전극 사이에 전도체로서 영가철이, 비전도체로서 규사가 혼합하여 충진되었다. 모의폐수(오염된 지하수를 모사하였으며 초기 질산성질소 농도 약 30 mg/L, 전기전도도 약 300 ${\mu}S/cm$)를 이용한 연속식 실험에서 인가전압 600 V, 유입유량 20 mL/min으로 최대 99% 이상의 질산성질소를 제거하였다. 최적 혼합비 및 최적 유입유량은 각각 1:1~2:1(규사:영가철), 30 mL/min으로 결정하였다. 질산성질소의 주입농도에 따라 유출수의 pH가 비례적으로 거동하였으며, 질산성질소 환원의 최종산물로서 약 60% 정도가 암모니아로 유출되었다. 실험이 끝난 후 영가철 표면에서의 산화철은 대부분 magnetite형태로 존재하였다.

Keywords

References

  1. 정주영, 박정호, 최원호, 박주양(2011) 영가철 충진 회분식 복극 전해조에 의한 질산성질소 제거, 대한토목학회논문집, 대한토목학회, 제31권 제2B호, pp. 187-192.
  2. Bonvin, G. and Comninellis, C.H. (1994) Scale-up of bipolar electrode stack dimensionless numbers for current bypass estimation. J. Appl. Electrochem., Vol. 24(6), pp. 469-474. https://doi.org/10.1007/BF00249844
  3. Choi, J.H., Maruthamuthu, S., Lee, H.G., Ha, T.H., and Bae J.H. (2009) Nitrate removal by electro-bioremediation technology in Korean soil. J. Hazard. Mater., Vol. 168(2-3), pp. 1208-1216. https://doi.org/10.1016/j.jhazmat.2009.02.162
  4. Hadzismajlovic, Dz. E., Popov, K.I. and Pavlovic, M.G. (1996) The visualization of the electrochemical behavior of metal particles in spouted, fluidized and packed beds. Powder Technol., Vo. 86(2), pp. 145-148. https://doi.org/10.1016/0032-5910(95)03031-X
  5. Hsia, T.H., Lo, S.L., Lin, C.F., and Lee, D.Y. (1994) Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Colloid. Surface, Vol. A85(1), pp. 1-7.
  6. Huang, Y.H. and Zhang T.C. (2005) Enhancement of nitrate reduction in $Fe^0$-packed columns by selected cations. J. Environ. Eng., Vol. 131(4), pp. 603-611. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:4(603)
  7. Juvekar, V.A., Patil, R.S., Gurumoorthy, A.V.P., and Contractor A.Q. (2009) Analysis of multiple reactions on a bipolar electrode, Ind. Eng. Chem. Res., Vol. 48(21), pp. 9441-9456. https://doi.org/10.1021/ie900437n
  8. Kim, H.J., Kusakabe, K., Hokazono, S., Morooka, S., and Kato, Y. (1987) Electro-oxidation rate of p-tert-butyltoluene in a bipolar packed-bed electrode cell. J. Appl. Electrochem., Vol. 17(6), pp. 1213-1222. https://doi.org/10.1007/BF01023605
  9. Kusakabe, K., Morooka, S., and Kato, Y. (1986) Equivalent resistances for current pathways in a bipolar packed-bed electrode cell. J. Chem. Eng. Jpn., Vol. 19(1), pp. 43-47. https://doi.org/10.1252/jcej.19.43
  10. Kusakabe, K., Morooka, S., and Kato Y. (1982) Current paths and electrolysis efficiency in bipolar packed-bed electrodes. J. Chem. Eng. Jpn., Vol. 15(1), pp. 45-50. https://doi.org/10.1252/jcej.15.45
  11. Loget, G. and Kuhn, A. (2011) Shaping and exploring the microand nanoworld using bipolar electrochemistry. Anal. Bioanal. Chem., Vol. 400(6), pp. 1691-1704. https://doi.org/10.1007/s00216-011-4862-1
  12. Paidar, M., Bouzek, K., and Bergmannm H. (2002) Influence of cell construction on the electrochemical reduction of nitrate. Chem. Eng. J., Vol. 85(2-3), pp. 99-109. https://doi.org/10.1016/S1385-8947(01)00158-9
  13. Yen, S.C. and Yao, C.Y. (1991) The bipolar analysis of a single sphere in an electrolytic cell. J. Electrochem. Soc., Vol. 138(9), pp. 2697-2703. https://doi.org/10.1149/1.2086039
  14. Zhou, M., Fu, W., Gu, H., and Lei, L. (2007) Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochim. Acta, Vol. 52(19), pp. 6052-6059. https://doi.org/10.1016/j.electacta.2007.03.064