DOI QR코드

DOI QR Code

Development of Non-linear Finite Element Modeling Technique for Circular Concrete-filled Tube (CFT)

원형 콘크리트 충전 강관 (CFT)의 비선형 유한 요소 해석 기법 개발

  • 문지호 (Univ. of Washington 토목환경공학과) ;
  • 고희중 (고려대학교 건축사회환경공학과) ;
  • 이학은 (고려대학교 건축사회환경공학과)
  • Received : 2012.01.12
  • Accepted : 2012.04.05
  • Published : 2012.06.30

Abstract

Circular concrete-filled tubes (CFTs) are composite members, which consists of a steel tube and concrete infill. CFTs have been used as building columns and bridge piers due to several advantages such as their strength-to-size efficiency and facilitation of rapid construction. Extensive experimental studies about CFT have been conducted for past decades. However experimental results alone are not sufficient to support the engineering of these components. Complementary advanced numerical models are needed to simulate the behavior of CFT to extend the experimental research and develop predictive tools required for design and evaluation of structural systems. In this study, a finite element modeling technique for CFT was developed. The confinement effects, and behavior of CFT subjected various types of loading predicted by the proposed finite element model for CFT were verified by comparing with test results.

원형 콘크리트 충전 강관 (CFT)은 강관과 콘크리트 내부채움재로 이루어진 합성구조로 급속 시공이 가능하고 치수 대비 강도의 효율성이 좋아 교량의 교각이나 건축물의 기둥으로 사용되고 있다. CFT에 대한 실험적 연구는 지난 수년간 꾸준히 연구되어 왔지만 이러한 실험 연구만으로 CFT의 거동을 파악하기는 충분하지 않다. 따라서, CFT의 실험 연구를 보완하고 보다 다양한 제원 및 하중 조건을 고려하여 CFT의 구조 거동을 파악하기 위해서는 수치해석 모델이 필요하다. 본 연구는 CFT의 비선형 유한 요소 해석 기법을 개발하는데 목표가 있다. 개발된 CFT의 유한 요소 해석 모델 기법은 다양한 하중이 작용하는 실험 결과들과 비교하여 그 타당성을 입증하였으며, 제안된 유한 요소 해석 모델은 CFT의 구속 효과 및 CFT의 구조 거동을 잘 모사할 수 있었다.

Keywords

References

  1. 김형수(2010) 특집기사: CFT 거더 교량. 한국강구조학회지, 한국강구조학회, 22(3), 15-19.
  2. 염승호(2001) 중심축 하중을 받는 콘크리트 충전 강재기둥의 해석. 인하대학교 대학원 석사학위논문.
  3. 황원섭, 김동조, 정대안 (2003) 콘크리트 구속효과를 고려한 CFT단주의 극한강도. 대한토목학회논문집, 대한토목학회, 제23권 3A호, 1011-1018.
  4. ABAQUS (2010) Abaqus Analysis User's Manual version 6.10., Dassault Systèmes Simulia Corp.
  5. ACI (2008) Building code requirements for structural concrete and commentary., Farmington Hills, Mich.
  6. AISC (2005) Specifications for structural steel buildings., Chicago, IL.
  7. Baltay, P. and Gjelsvik, A. (1990) Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering ASCE, 2(1), 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  8. Ellobody, E., and Young, B. (2006) Nonlinear analysis of concretefilled steel SHS and RHS columns. Thin-Walled Structures, 44, 919-930.
  9. Eurocode 4, European Committee for Standardisation, EN 1994-1-1 (2004) Design of composite steel and concrete structures, Part 1.1 General rules and rules for buildings., European Union.
  10. Han, L.-H. and Yan, S.-Z. (2000) Experimental studies on the strength with high slenderness ratio concrete filled steel tubular columns. Proceeding of 6th ASCCS conference, Mar22-24, LA, 419-425.
  11. Hajjar, J.F. and Gourley, B.C. (1996) Representation of concretefilled steel tube cross-section strength. Journal of Structural Engineering ASCE, 122(11), 1327-1236. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
  12. Hu, H.T., Huang, C.S., Wu, M.H., and Wu, Y.M. (2003) Nonlinear analysis of axial loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  13. Huang, C.S. et al. (2002) Axial load behavior of stiffened concrete filled steel columns. Journal of Structural Engineering ASCE, 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)
  14. Lee, J. and Fenves, G.L. (1998) Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics ASCE, 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  15. Lu, H., Han, LH., and Zhao, X.L. (2009) Analytical behavior of circular concrete-filled thin-walled steel tubes subjected to bending. Thin-Walled Structures, 47, 346-358. https://doi.org/10.1016/j.tws.2008.07.004
  16. Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989) A plasticdamage model for concrete. International Journal of Solids and Structures, 25, 299-329. https://doi.org/10.1016/0020-7683(89)90050-4
  17. Marson, J. and Bruneau, M. (2004) Cyclic testing of concrete-filled circular steel bridge piers having encased fixed-base detail. Journal of Bridge Engineering ASCE, 9(1), 14-23. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:1(14)
  18. Matsui, C., Tsuda, K., and Ishibashi, Y. (1995) Slender concrete filled steel tubular columns under combined compression and bending. In: Structural steel, PSSC95, fourth pacific structural steel conference. Steel-concrete composite structures, 3, 29-36.
  19. Roeder, C.W., Lehman, D.E., and Bishop, E. (2010) Strength and Stiffness of Circular Concrete Filled Tubes. Journal of Structural Engineering ASCE, 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263
  20. Saenz, L.P. (1964) Discussion of 'Equation for the stress-strain curve of concrete' by P. Desayi, and S. Krishnan. ACI Journal, 61, 1229-1235.
  21. Schneider, S.P. (1998) Axially loaded concrete-filled steel tubes. Journal of Structural Engineering ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  22. Thody, R. (2006). Experimental investigation of the flexural properties of high-strength concrete-filled steel tubes. MS Thesis, University of Washington, Seattle, WA.