DOI QR코드

DOI QR Code

Characteristics of Runout Distance of Debris Flows in Korea

한국 토석류의 이동거리 특성

  • 최두영 (국립산림과학원, 산림방재연구과) ;
  • 백중철 (강릉원주대학교 토목공학과)
  • Received : 2012.01.25
  • Accepted : 2012.04.17
  • Published : 2012.06.30

Abstract

In the last decade, heavy rainfall induced debris flow events have been remarkably occurred in Korea. Consequently, debris flow is becoming one of the most dangerous natural phenomena in mountainous area. Understanding and correct predicting of the runout distance of debris flow is an essential prerequisite for developing debris flow hazard map and prevention technology. Based on the simple and widely used sled model, in this study, we analyse the net efficiency of debris flows which is a dimensionless constant (=1/R) and defined by the ratio of the horizontal runout distance L from the debris flow source to deposit and the vertical elevation H of the source above the deposit. The analysis of field data observed in total 238 debris flow events occurred from 2002 to 2011 reveals that the representative value of the net efficiency of debris flows in Korea is 4.3. The data observed in Gangwon province where is the most debris flow-prone area in Korea shows that debris flows in Inje area have the runout distance longer than those in Pyongchang and Gangneung. Overall features of the net efficiency of debris flows observed in the central Korea are similar to those in the southern Korea. The estimation based on aerial photographs and available depositional conditions appears to overestimate the net efficiency compared to estimation based on the field observations, which indicates that appropriate depositional conditions need to be developed for debris flows in Korea.

지난 10년이래 집중강우에 의해서 유발된 토석류가 우리나라에서 현저히 발생하고 있다. 그로 인해 산지유역에서 토석류는 가장 위험한 자연재해 중 하나가 되고 있다. 토석류 위험지도와 방재 기술을 개발하기 위해서 먼저 이해해야 하고 정확히 예측해야 하는 것 중 하나는 발생한 토석류의 이동거리이다. 단순하고 적용범위가 넓은 sled 모형에 근거해서, 이 연구에서는 현장조사를 통해 구한 토석류 자료를 이용하여 토석류의 수평이동거리(L)에 대한 토석류 시작점과 퇴적점의 표고차(H) 비로 정의되어 이동성을 나타내는 토석류의 순효율을 산정하였다. 2002년 이후 현재까지 확보된 국내 238개의 토석류 현장 자료를 분석한 결과 한국 토석류의 순효율 대푯값은 4.3인 것으로 나타났다. 가장 많은 토석류가 발생하는 강원지역의 경우 강릉과 평창지역보다는 인제지역의 토석류가 상대적으로 표고차에 비해 이동거리가 큰 것으로 나타났다. 국내 토석류를 중부지역과 남부지역으로 나눠 분석한 결과 두 지역 모두 토석류의 전반적인 순효율 분포는 유사한 것으로 나타났다. 가용한 토석류 퇴적조건 적용과 항공사진 분석을 통해 산정하는 방법은 토석류의 순효율을 과대 산정하는 것으로 나타났다. 이 방법을 적용하기 위해서는 우리나라 토석류에 적합한 퇴적조건을 도출하는 연구가 필요한 것으로 나타났다.

Keywords

References

  1. 김상규, 서흥석(1997) 레올로지 모델을 이용한 토석류 이동해석. 한국지반공학회지, 한국지반공학회, 제13권 제5호, pp. 133-143.
  2. 김영일, 백중철(2011) 횡단 배수로에서 토석류 퇴적에 대한 유사 농도와 바닥경사 영향 실험연구. 대한토목학회논문집, 대한토목학회, 제31권 제5B호, pp. 393-489.
  3. 김경석, 장현익, 유병옥(2007) 고속도로 토석류 조사와 특성분석, 제33회. 대한토목학회 정기학술대회논문집, 대한토목학회, pp. 759-762.
  4. 김기환, 이동혁, 김대회, 이승호(2008) 토석류 흐름 상태 특성 파악을 위한 모형실험 연구. 한국지반공학회 논문집, 한국지반공학회, 제9권 제5호, pp. 83-89.
  5. 서용석, 채병곤, 김원영, 송영석(2005) 인공신경망을 이용한 사태 물질 이동거리 산정. 대한지질공학회 학술발표회 논문집, 대한지질공학회, 제15권 제2호, pp. 145-154.
  6. 신승봉, 김기환, 최창림(2010) 주문진 표준사를 이용한 토석류 확산에 관한 연구, 2010년. 한국지반환경공학회 학술발표회논문집, 한국지반환경공학회, 제5호, pp. 429.
  7. 황학, 고갑수(1996) 토석류 거동을 위한 운동학적 모형. 대한토목학회논문집, 대한토목학회, 제16권 제3C호, pp. 287-294.
  8. Campbell, C.S. (1989) Self lubrication for long run-out landslides, Journal of Geology, Vol. 97, pp. 652-665.
  9. Cannon, S.H. and Savage, W.Z. (1988) A mass-change model for the estimation of debirs-flow runout, Journal of Geology, Vol. 96, pp. 221-227. https://doi.org/10.1086/629211
  10. Chapman, S. and Cowling, T.G. (1970) The Mathematical Theory of Non-Uniform Gases, 3rd ed., p. 423, Cambridge University Press, New York.
  11. Denlinger, R.P. and Iverson, R.M. (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests, Journal of Geophysical Research, V. 106, No. B1, p.553-566, January 10, 2001 https://doi.org/10.1029/2000JB900330
  12. Drake, T.G. (1990) Structural features in granular flows, Journal of Geophysical Research., Vol. 95, No. B6, pp. 8681-8696. https://doi.org/10.1029/JB095iB06p08681
  13. Heim, A. (1932) Bergsturz und Menschenleben, Zuich: Fretz & Wasmuth.
  14. Hui, K. and Haff, P.K. (1986) Kinetic grain flow in a vertical channel, International Journal of Multiphase Flow, Vol. 12, pp. 289-298. https://doi.org/10.1016/0301-9322(86)90031-5
  15. Hungr, O., Morgan, G.C., VanDine, D.F., and Lister, D.R. (1987) Debris flow defences in British Columbia. In Debris flows/avalanches: process, recognition and mitigation, Reviews in Engineering Geology. J.E. Costa and G.F. Wieczorek (Editors). Geol. Soc. Am., Vol. VII, pp. 201-222.
  16. Ikeya, H. (1976) Introduction to sabo works: The preservation of land against sediment disaster, The Japan Sabo Association, Toyko. p. 168.
  17. Ikeya, H. (1981) A method of designation for area in danger of debris flow, In Erosion and sediment transport in Pacific Rim Steeplands, Proc. of the Christchurch Symp., Int. Assoc. Hydrol. Sci., Publ. No. 132, pp. 576-588.
  18. Iverson, R.M. (1997) The physics of debris flows: in Review of Geophysics, 35, 3, August 1997, pp.245-296, published by American Geophysical Union, Paper #97RG00426. https://doi.org/10.1029/97RG00426
  19. Iverson, R.M. and LaHusen, R.G. (1989) Dynamic pore-pressure fluctuations in rapidly shearing granular materials, Science, Vol. 246, No. 4931, pp. 796-799. https://doi.org/10.1126/science.246.4931.796
  20. Iverson, R.M., Reid, M.E., and LaHusen, R.G. (1997) Debris-flow mobilization from landslides, Annual Review of Earth and Planetary Sciences, Vol. 25, pp. 85-138. https://doi.org/10.1146/annurev.earth.25.1.85
  21. Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., and Brien, D.L. (2000) Acute sensitivity of landslide raters to initial soil porosity, Science, Vol. 290, p. 513-516. https://doi.org/10.1126/science.290.5491.513
  22. Iverson, R.M., Reid, M.E., Logan, M., LaHusen, R.G., Godt, J.W., and Griswold, J.P. (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nature Geoscience Vol. 4, pp. 116-121. https://doi.org/10.1038/ngeo1040
  23. Johnson, A.M. and Rodine, J.R. (1984) Debris flow, In D. Brunsden and D. B. Prior (Eds.), Slope Instability, John Wiley & Sons, pp. 257-361.
  24. Lancaster, S.T. and Hayes, S.K., and Grant, G.E. (2003) Effects of wood on debris flow runout in small mountain watersheds, Water Resources Research, Vol. 39, No. 6, pp. 1168.
  25. Lo, Dok (2000) Review of natural terrain landslide debris-resisting barrier design. GEO Report No. 104, Geotechnical Engineering Office, Civil Engineering Department, The Government of Hong Kong Special Administrative Region.
  26. Major, J.J. (1997) Depositional processes in large-scale debris-flow experiments, Journal of Geology, Vol. 105, pp. 345-366. https://doi.org/10.1086/515930
  27. Major, J.J. (2000), Gravity-driven consolidation of granular slurries - implications for debris-flow deposition and deposit characteristics, Journal of Sedimentary Research, Vol. 70, pp. 64-83. https://doi.org/10.1306/2DC408FF-0E47-11D7-8643000102C1865D
  28. Major, J.J. and Pierson, T.C. (1992) Debris flow rheology: Experimental analysis of fine-grained slurries, Water Resources Research., Vol. 28, pp. 841-857. https://doi.org/10.1029/91WR02834
  29. Marchi, L. and D'agostino, V. (2004) Estimation of debris-flow magnitude in the eastern Italian Alps, Earth Surface Processes and Landforms, Vol. 29, pp. 207-220. https://doi.org/10.1002/esp.1027
  30. Mizuyama, T. and Uehara, S. (1983) Experimental study of the depositional process of debris flows, Transaction of Japan Geomorphological Union, Vol. 4, pp. 49-64.
  31. Paik, J., Park, S.-D., and Yoon, Y.-H. (2010), A shock-capturing method for 1D debris flow equations, Proceedings of IAHRAPD Congress 2010, Auckland, New Zealand, February 21-24, 2010.
  32. Paik, J. and Park, S.-D. (2011) Numerical simulation of flood and debris flows through drainage culvert, in: 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, edited by: Genevois, R., Hamilton, D. L., and Prestininzi, A., Casa Editrice Universita La Sapienza, Roma, 487-493, 2011.
  33. Phillips, C.J. and Davies, T.R.H. (1991), Determining rheological parameters of debris flow material, Geomorphology Vo. 4, pp. 101-110. https://doi.org/10.1016/0169-555X(91)90022-3
  34. Pierson, T.C. (1995) Flow characteristics of large eruption-tiggered debris flows at snow clad volcanoes: constraints for debris-flow models, Journal of Volcanology and Geothermal Research, Vol. 66, pp. 283-294. https://doi.org/10.1016/0377-0273(94)00070-W
  35. Pirulli, M. and Sorbino, G. (2008), Assessing potential debris flow run-out: a comparison of two simulation models, Natural Hazards and Earth System Sciences, Vol. 8, pp. 961-971. https://doi.org/10.5194/nhess-8-961-2008
  36. Prochaska A.B., Santi P.M., Higgins J.D., and Cannon S.H. (2008) A study of methods to estimate debris-flow velocity, Landslides, Vol. 5, No. 4, pp. 431-444. https://doi.org/10.1007/s10346-008-0137-0
  37. Remaitre, A., Malet, J.P., Maquaire, O., Ancey, C., and Locat, J. (2005) Flow behaviour and runout modelling of a complex debris flow in a clay-shale basin, Earth Surface Processes and Landforms, Vol. 30, No. 4, pp. 478-488.
  38. Rickenmann, D. (1999) Empirical relationships for debris flows. Natural Hazards, Vol. 19, pp. 47-77. https://doi.org/10.1023/A:1008064220727
  39. Rickenmann, D. (2005) Runout prediction methods. In: Jakob, M., Hungr, O. (Eds.), Debris-flow Hazards and Related Phenomena. Praxis, Chichester, UK, pp. 305-324.
  40. Sassa, K. (1988) Special lecture: Geotechnical model for the motion of landslides, Procedings of the 5th International Symposium on Landslides, pp. 37-55.
  41. Scheidegger, A.E. (1973) On the prediction of the reach and velocity of catastrophic landslides, Rock Mechanics and Rock Engineering, Vol. 5, No. 4, pp. 231-236.
  42. Shreve, R.L. (1968) The Blackhawk landslide, Geological Society of America Special paper 108.
  43. Takahashi, T. (1991) Debris flow, IAHR Monograph. A.A. Balkema Publ., Rotterdam.
  44. VanDine, D.F. (1996) Debris flow control structures for forest engineering, Working Paper 22/1996, BC Ministry of Forests, Victoria, BC, Canada.
  45. Zhang, Y. and Campbell, C.S. (1992) The interface between fluid-like and solid-like behavior in two-dimensional granular flows, Journal of Fluid Mechanics, Vol. 237, pp. 541-68. https://doi.org/10.1017/S0022112092003525