DOI QR코드

DOI QR Code

Chip Interconnection Process for Smart Fabrics Using Flip-chip Bonding of SnBi Solder

SnBi 저온솔더의 플립칩 본딩을 이용한 스마트 의류용 칩 접속공정

  • Choi, J.Y. (Department of Materials Science and Engineering, Hongik University) ;
  • Park, D.H. (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, T.S. (Department of Materials Science and Engineering, Hongik University)
  • 최정열 (홍익대학교 공과대학 신소재공학과) ;
  • 박동현 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2012.09.15
  • Accepted : 2012.09.28
  • Published : 2012.09.30

Abstract

A chip interconnection technology for smart fabrics was investigated by using flip-chip bonding of SnBi low-temperature solder. A fabric substrate with a Cu leadframe could be successfully fabricated with transferring a Cu leadframe from a carrier film to a fabric by hot-pressing at $130^{\circ}C$. A chip specimen with SnBi solder bumps was formed by screen printing of SnBi solder paste and was connected to the Cu leadframe of the fabric substrate by flip-chip bonding at $180^{\circ}C$ for 60 sec. The average contact resistance of the SnBi flip-chip joint of the smart fabric was measured as $9m{\Omega}$.

SnBi 저온솔더의 플립칩 공정을 이용한 스마트 의류용 칩 접속공정에 대해 연구하였다. 캐리어 필름에 형성한 Cu 리드프레임을 $130^{\circ}C$에서 직물에 열압착 시킴으로써 Cu 리드프레임이 전사된 직물 기판을 형성하였다. 칩 시편에 SnBi 페이스트를 도포하여 솔더범프를 형성한 후 직물 기판의 Cu 리드프레임에 배열하고 $180^{\circ}C$에서 60초 동안 유지시켜 플립칩 본딩하였다. SnBi 저온솔더를 사용하여 형성된 스마트 의류용 플립칩 접속부의 평균 접속저항은 $9m{\Omega}$이었다.

Keywords

References

  1. Y. K. Son, J. E. Kim and I. Y. Cho, "Trends on Wearable Computer Technology and Market", Electronics and Telecommunications Trends, 23, 79 (2008).
  2. J. E. Kim, H. T. Jeong and I. Y. Cho, "Trend in Digital Clothing Technology", Electronics and Telecommunications Trends, 24, 20 (2009).
  3. S. Wagner, E. Bonderover, W. B. Jordan and J. C. Strum, "Electrotextiles: Concepts and Challenges", Int. J. High Speed Electon. Syst., 12, 391 (2002). https://doi.org/10.1142/S0129156402001186
  4. T. Linz, R. Vieroth, C. Dils, M. Koch, T. Braun, K. F. Becker, C. Kallmayer and S. M. Hong, "Embroidered Interconnections and Encapsulation for Electronics in Textiles for Wearable Electronics Applications", Adv. Sci. Technol., 60, 85 (2008). https://doi.org/10.4028/www.scientific.net/AST.60.85
  5. S. J. Schwartz and A. Pentland, "The Smart Vest: Towards a Next Generation Wearable Computing Platform", MIT Media Laboratory Perceptual Computing Section Technical Report No. 504, pp.1-7 (1999).
  6. T. Linz, C. Kallmayer, R. Aschenbrenner and H. Reichl, "Fully Integrated EKG Shirt Based on Embroidered Electrical Interconnections with Conductive Yarn and Miniaturized Flexible Electronics", Proc. 3rd Int. Workshop on Wearable and Implantable Body Sensor Networks (BSN 2006), pp.23-26 (IEEE, 2006).
  7. T. Linz, L. Gourmelon and G. Langereis, "Contactless EMG Sensors Embroidered onto Textile", Proc. 4th Int. Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), pp.29-34 (IEEE, 2007).
  8. D. Meoli and T. May-Plumlee, "Interactive Electronic Textile Development", J. Textile Apparel, Technol. Manag., 2, 1, 2002.
  9. E. R. Post, M. Orth, P. R. Russo and N. Gershenfeld, "E-broidery: Design and Fabrication of Textile-based Computing", IBM Syst. J., 39, 840 (2000). https://doi.org/10.1147/sj.393.0840
  10. D. Marculescu, R. Marculescu, N. H. Zamora, P. Stanley- Marbell, P. K. Khosla, S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, Z. Grzyb, G. Troster, M. Jones, T. Martin and Z. Nakad, "Electronic Textiles: A Platform for Pervasive Computing", Proc. IEEE, 91, 1995 (2003). https://doi.org/10.1109/JPROC.2003.819612
  11. S. Park and S. Jayaramin, "Smart Textiles: Wearable Electronic Systems", MRS Bulletin, 27, 585 (2003).
  12. R. Vieroth, C. Kallmayer, R. Ascenbrenner and H. Reichl, "A New Package for Textile Integrated RFID Tags", Proc. 11th Electon. Packag. Technol. Conf., pp.240-243 (2009).
  13. P. Lukowicz, T. Kirstein and G. Troster, "Wearable Systems for Health Care Applications", Methods Inf. Med., 43, 232 (2004).
  14. Y. Kim, H. Kim and H. J. Yoo, "Electrical Characterization of Screen-Printed Circuits on the Fabric", IEEE Trans. Adv. Packag., 33 196 (2010).
  15. U. R. Kattner, "Phase Diagrams for Lead-Free Solder Alloys", JOM, 54, 45 (2002).
  16. J. Y. Choi, J. H. Lee, J. T. Moon and T. S. Oh, "Wafer-Level MEMS Capping Process Using Electrodeposition of Ni Cap and Debonding with SnBi Solder Layer", J. Microelectron. Packag. Soc., 16(4), 23 (2009).
  17. S. C. Kim and Y. H. Kim, "Low Temperature Bonding Technology for Electronic Packaging", J. Microelectron. Packag. Soc., 19(1), 17 (2012). https://doi.org/10.6117/kmeps.2012.19.1.017
  18. J. Kloeser, K. Heinricht, K. Kutzner, E. Jung, A. Ostmann and H. Reichl, "Fine Pitch Stencil Printing of Sn/Pb and Lead Free Solders for Flip Chip Technology", IEEE Trans. Comp. Packag. Manuf. Technol., 21, 41 (1998). https://doi.org/10.1109/3476.670027

Cited by

  1. Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging vol.20, pp.4, 2013, https://doi.org/10.6117/kmeps.2013.20.4.017
  2. Contact Resistance of Flip-Chip Joints in Wearable Electronic Textiles vol.43, pp.12, 2014, https://doi.org/10.1007/s11664-014-3431-8
  3. Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.125
  4. Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.039
  5. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2012, https://doi.org/10.6117/kmeps.2019.26.4.047
  6. Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics vol.11, pp.2, 2012, https://doi.org/10.3390/met11020364
  7. Review on the Integration of Microelectronics for E-Textile vol.14, pp.17, 2012, https://doi.org/10.3390/ma14175113
  8. Washable, Low-Temperature Cured Joints for Textile-Based Electronics vol.10, pp.22, 2021, https://doi.org/10.3390/electronics10222749