DOI QR코드

DOI QR Code

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications

선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가

  • 김명환 (한국해양대학교 기관공학부) ;
  • 길병래 (한국해양대학교 기관공학부)
  • Received : 2012.09.10
  • Accepted : 2012.11.22
  • Published : 2012.11.30

Abstract

As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

SOFC시스템 고효율화의 한 방법으로 SOFC/GT 하이브리드시스템은 유효하다. 그러나 시스템의 출력 규모가 수십 MW급의 선박용이라면 하부시스템으로 사용되는 GT시스템의 냉각방식 도입은 장치를 복잡하게 만들고 제어 또한 쉽지 않게 된다. 따라서 선박용으로는 SOFC/GT(유냉각) 하이브리드시스템보다 SOFC/GT(무냉각) 하이브리드시스템이 더 적합해 보인다. 본 연구는 SOFC/GT(무냉각) 하이브리드시스템을 구축하고 그 시스템에 대한 스택의 작동온도와 전류밀도, 가스터빈의 압력비, TIT가 시스템의 성능에 미치는 영향 등을 시뮬레이션을 통하여 검토한 것으로 공기압축기 소요 동력의 증가에도 불구하고 전기적 효율은 상승되며 TIT에는 운전을 위한 제한된 온도범위가 존재한다는 것을 알 수 있었다.

Keywords

References

  1. M. H. Kim, "Analysis on the technology R&D of the fuel cell systems for power generation in Ships", Journal of the Korean Society of Marine Engineering, vol. 31, no. 8, pp. 924-931, 2007 (in Korean). https://doi.org/10.5916/jkosme.2007.31.8.924
  2. P. Kuchonthara, S. Bhattacharya, and A. Tsutsumi, "Combinations of solid oxide fuel cell and several enhanced gas turbine cycles", Journal of Power Sources, vol. 124, no. 1, pp. 65-75, 2003. https://doi.org/10.1016/S0378-7753(03)00740-7
  3. W. Winkler and H. Lorenz, "The design of stationary and mobile solid oxide fuel cell-gas turbine systems", Journal of Power Sources, vol. 105, no. 2, pp. 222-227, 2002. https://doi.org/10.1016/S0378-7753(01)00943-0
  4. A. Arsalis, "Thermoeconomic modeling and parametric study of hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe", Journal of Power Sources, vol. 181, no. 2, pp. 313-326, 2008. https://doi.org/10.1016/j.jpowsour.2007.11.104
  5. M. H. Kim, "Performance analysis of marine solid oxide fuel cell and gas turbine hybrid power system (under conditions of turbine cooling and constant temperature in cathode inlet)", Journal of the Korean Society of Marine Engineering, vol. 33, no. 8, pp. 1107-1115, 2009 (in Korean). https://doi.org/10.5916/jkosme.2009.33.8.1107
  6. E. Achenbach, "Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack", Journal of Power Sources, vol. 49, pp. 333-348, 1994. https://doi.org/10.1016/0378-7753(93)01833-4

Cited by

  1. 튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구 vol.26, pp.7, 2012, https://doi.org/10.7837/kosomes.2020.26.7.915