DOI QR코드

DOI QR Code

고에너지 열원에 따른 스테인리스강의 제살용접특성 비교

Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source

  • 투고 : 2012.09.19
  • 심사 : 2012.11.19
  • 발행 : 2012.11.30

초록

오늘날 LNG선의 용접에는 아크와 플라즈마가 사용되고 있으나 아크용접은 에너지 밀도가 낮아 후판에 대해서 다층용접이 불가피하며, 고밀도 열원인 레이저 용접에 비하여 용접속도에도 한계가 있다. 따라서 후판 용접시 다층용접에 의한 용접부의 조직적 결함이나 과대 입열로 형성된 열영향부 등의 문제를 해소하기 위하여 키홀용접에 의한 원패스 용접이 고려되고 있다. 키홀용접이 가능한 열원은 레이저, 전자빔, 플라즈마가 있으며, 현재 플라즈마 용접이 아크를 대체하여 LNG선 카고탱크의 멤브레인 용접에 적용되고 있다. 최근에는 멤브레인의 용접에 레이저를 적용하기 위한 많은 연구가 진행 중에 있다. 본 연구에서는 LNG선용 스테인리스강에 대한 파이버 레이저 및 플라즈마 아크 용접의 용접성, 기계적 성질 및 미세조직을 비교하였다. 그 결과 레이저 용접이 더 빠른 용접속도에서 좁은 용접부와 열영향부를 얻을 수 있었다. 따라서 LNG선의 용접에서는 파이버 레이저가 보다 우수한 용접법이라는 것을 알 수 있었다.

Today the welding for LNG carrier is known to be possible using arc and plasma arc welding process. But because of the lower energy density, arc welding is inevitable to multi-pass welding for thick plate and has a limit of welding speed compared to laser which is high energy density heat source. When thick plate is welded, weld defect by multi-pass welding and heat-affected zone by high heat-input were formed. Therefore one-pass welding by key-hole has been considered to work out the problems. It is possible for Laser, electron beam, plasma process to do key-hole welding. Nowadays, plasma process has been used for welding membrane of cargo tank for LNG carrier instead of arc process. Recently, many studies have examined to apply laser process to welding of membrane. In this paper, weldability, microstructure and mechanical properties of stainless steel for LNG carrier welded by fiber laser were compared to those by plasma. As a result, although the laser welding has several times faster speed, similar properties and smaller weld and heat affected zone were obtained. Consequently, this study proves the superiority of fiber laser welding for LNG carrier.

키워드

참고문헌

  1. H. W. Lee, Y. T. Shin, J. U. Park, J. W. Lee and C. Y. Kang, "A study on low temperature strength and fatigue strength of austenitic stainless steel for membrane type LNG tank", Journal of Korea Welding Society, vol. 17, no. 3, pp. 198-202, 1999.
  2. H. Kokawa, "Weld decay-resistant austenitic stainless steel by grain boundary engineering", Journal of Materials Science, vol. 40, no. 4, pp. 927-932, 2005. https://doi.org/10.1007/s10853-005-6511-6
  3. Science and Technology Publishing Editorial Dep., Handbook of Stainless, Science and Technology Pub., 2000 (in Korean).
  4. L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar and C. J. Kong, "Welding with high power fiber lasers - A preliminary study", Materials and Design, vol. 28, pp. 1231-1237, 2007. https://doi.org/10.1016/j.matdes.2006.01.009
  5. E. A. Trillo, R. Beltran, J. G. Maldonado, R. J. Romero, L. E. Murr, W. W. Fisher and A. H. Advani, "Combined effects of deformation (strain and strain state), grain size, and carbon content on carbide precipitation and corrosion sensitization in 304 stainless steel", Materials Characterization, vol. 35, no. 2, pp. 99-112, 1995. https://doi.org/10.1016/1044-5803(95)00072-0
  6. Y. H. Moon and S. D. Hur, "Delta-ferrite formation factor of austenitic stainless steel weld", Journal of The Korean Welding and Joinig Society, vol. 5, no. 1, pp. 16-22, 1987 (in Korean).
  7. B. S. Rho, H. U. Hong and S. W. Nam, "The effect of $\delta$-ferrite on fatigue cracks in 304L steels", International Journal of Fatigue, vol. 22, pp. 683-690, 2000. https://doi.org/10.1016/S0142-1123(00)00043-8
  8. P. S. Korinko and S. H. Malene, "Considerations for the weldability of types 304L and 316L stainless steel", practical failure analysis, vol. 1, no. 4, pp. 61-68, 2001. https://doi.org/10.1007/BF02715336
  9. M. Y. Lee, "A multi killowatts CW fiber laser welding", Journal of Korean Welding and Joining Society, vol. 26, no. 4, pp. 318-323, 2008. https://doi.org/10.5781/KWJS.2008.26.4.008

피인용 문헌

  1. Fundamental study on the weldability and formability of INCOLOY825 alloys and STS316L alloys vol.38, pp.6, 2014, https://doi.org/10.5916/jkosme.2014.38.6.698
  2. A Study on the Weldability of INCOLOY 825 Alloys and STS316L Alloys vol.1110, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1110.118