DOI QR코드

DOI QR Code

Flow Analysis over Moving Circular Cylinder Near the Wall at Moderate Reynolds Number

낮은 레이놀즈 수에서 벽면에 근접하여 이동하는 실린더 주위의 유동해석

  • 곽승현 (한라대학교 컴퓨터응용설계학과)
  • Received : 2012.10.08
  • Accepted : 2012.11.12
  • Published : 2012.11.30

Abstract

The aerodynamic characteristics of circular cylinder in a channel are studied to make clear the flow feature by solving the Navier-Stokes equation based on the finite volume method with unstructured grids. Reviews are made on with the vorticity, velocity, dynamic pressure, residual and drag, where the Reynolds numbers are 50 and 100. The flows for $Re{\succeq}50$ shows the vortex shedding in the wake, and the result is the same as the case of moving cylinder. The ground effect of flat bottom results in the growth of vortex, being generated in the upper side of the cylinder and elongated in the rear. As the cylinder approaches to wall, for example 0.6, the cylinder plays as a role of blockage to obstruct the flow between the cylinder and wall. The drag coefficients are compared with others' results to confirm the validity of the present numerical simulation.

유한체적법을 기반으로 나비에 스톡스 방정식을 비구조격자로 풀어 실린더 주위의 공력특성을 규명하였다. 보텍스, 속도, 압력, 잔차, 항력계수 등의 데이터를 가지고 분석하였고 레이놀즈 수는 50, 100이다. 유동특성은 Re>50에서 주기적으로 진동하는 소용돌이를 후류에 형성하며 이 현상은 이동하는 실린더에서도 유사한 현상을 보여 주었다. 지면효과는 실린더 위쪽에서 형성된 소용돌이가 벽면에 근접할수록 실린더의 후방으로 길게 늘어나는 형상을 보이고, 실린더와 근접벽면 사이의 유속이 정체되어 실린더와 벽면 사이의 간격이 0.6 에서는 근접 평판과 실린더 사이의 유동이 거의 끊겨짐을 알 수 있었다. 본 수치계산의 검증을 위하여 항력계수를 타 연구결과와 비교하였다.

Keywords

References

  1. H. M. Kim and M. S. Jhon, "Numerical study on flow over oscillating circular cylinder using curved moving boundary treatment," Journal of The Korean Society of Mechanical Engineers B, vol. 31, no. 11, pp. 895-903, 2007 (in Korean). https://doi.org/10.3795/KSME-B.2007.31.11.895
  2. C. Zhu, S. C. Liang and L.S. Fan, "Particle wake effects on the drag force of an interactive particle," International Journal of Multiphase Flow, vol. 20, pp. 117-129, 1994. https://doi.org/10.1016/0301-9322(94)90009-4
  3. S. C. Liang, T. Hong and L.S. Fan, "Effects of particle arrangements on the drag force of a particle in the intermediate flow regime," International Journal of Multiphase Flow, vol. 22, no. 2, pp. 285-306, 1996. https://doi.org/10.1016/0301-9322(95)00070-4
  4. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, 1997.
  5. R. Mei, D. Yu, W. Shyy and L. S. Luo, "Force evaluation in the lattice boltzmann method involving curved geometry," Physical Review E, vol. 65, no. 041203, 2002.
  6. M. Schafer and S. Turek, "Flow simulation with high-performance computer II," Notes in Numerical Fluid Mechanics, vol. 52, 1996.

Cited by

  1. Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator vol.19, pp.1, 2015, https://doi.org/10.6108/KSPE.2015.19.1.025
  2. Flow visualization of PM preprocessing system using the small scale gascyclone precipitator vol.52, pp.3, 2016, https://doi.org/10.3796/KSFT.2016.52.3.263
  3. A Study on the Configuration of Turbo Charger through Flow Analysis vol.17, pp.3, 2018, https://doi.org/10.14775/ksmpe.2018.17.3.034
  4. 랜딩기어 형상에 따른 공기 유동으로 인한 항공기 성능에 미치는 영향에 관한 연구 vol.16, pp.6, 2017, https://doi.org/10.14775/ksmpe.2017.16.6.035
  5. A Flow Study by the Number of Wings at Ship Propeller vol.18, pp.9, 2012, https://doi.org/10.14775/ksmpe.2019.18.9.017
  6. Flow Analysis of Air Cleaner and Resonator by Shape vol.18, pp.9, 2012, https://doi.org/10.14775/ksmpe.2019.18.9.023