DOI QR코드

DOI QR Code

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators

  • Dolatabady, Alireza (Optical Communication Lab., Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology) ;
  • Granpayeh, Nosrat (Optical Communication Lab., Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology)
  • Received : 2012.08.13
  • Accepted : 2012.10.26
  • Published : 2012.12.25

Abstract

In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.

References

  1. R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nat. Photon. 1, 303-305 (2007). https://doi.org/10.1038/nphoton.2007.84
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics-a route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
  3. P. Tuchscherer, "Analytic coherent control of plasmon propagation in nanostructures," Opt. Express 17, 14235-14259 (2009). https://doi.org/10.1364/OE.17.014235
  4. W. L. Barnes, A. Darnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 242, 824-830 (2003).
  5. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7554 (2009). https://doi.org/10.1364/OE.17.007549
  6. N. Talebi, A. Mahjoubfar, and M. Shahabadi, "Plasmonic ring resonator," J. Opt. Soc. Am. B 25, 2116-2122 (2008). https://doi.org/10.1364/JOSAB.25.002116
  7. D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics 4, 83-91 (2010). https://doi.org/10.1038/nphoton.2009.282
  8. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscales dimensions," Science 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
  9. J. Jung, "Optimal design of dielectric-loaded surface plasmon polaritons waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010). https://doi.org/10.3807/JOSK.2010.14.3.277
  10. B. Jafarian, N. Nozhat, and N. Granpayeh, "Analysis of a triangular-shaped plasmonic metal-insulator-metal Bragg grating waveguide," J. Opt. Soc. Korea 15, 118-123 (2011). https://doi.org/10.3807/JOSK.2011.15.2.118
  11. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, "Multi-channel plasmonic waveguide filters with disk-shaped nanocavities," Opt. Commun. 284, 2613-2616 (2011). https://doi.org/10.1016/j.optcom.2011.01.046
  12. A. Setayesh, S. R. Mirnaziry, and M. S. Abrishamian, "Numerical investigation of tunable band-pass\band-stop plasmonic filters with hollow-core circular ring resonator," J. Opt. Soc. Korea 15, 82-89 (2011). https://doi.org/10.3807/JOSK.2011.15.1.082
  13. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, "Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonator at telecommunication regime," Opt. Express 19, 3513-3518 (2011). https://doi.org/10.1364/OE.19.003513
  14. Z. Lu and W. Zhao, "Nanoscale electro-optic modulators based on grapheme-slot waveguides," J. Opt. Soc. Am. B 29, 1490-1496 (2012). https://doi.org/10.1364/JOSAB.29.001490
  15. S. Kim, Y. T. Byun, D. G. Kim, N. Dagli, and Y. Chung, "Widely tunable coupled-ring reflector laser diode consisting of square ring resonators," J. Opt. Soc. Korea 14, 38-41 (2010). https://doi.org/10.3807/JOSK.2010.14.1.038
  16. M. Farahani, N. Granpayeh, and M. Rezvani, "Broadband zero reflection plasmonic junctions," J. Opt. Soc. Am. B 29, 1722-1730 (2012).
  17. J. H. Jung and M. W. Kim, "Optimal design of fiber-optic surface plasmon resonance sensors," J. Opt. Soc. Korea 11, 55-58 (2007). https://doi.org/10.3807/JOSK.2007.11.2.055
  18. K. M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010). https://doi.org/10.3807/JOSK.2010.14.2.065
  19. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express 19, 2910-2915 (2011). https://doi.org/10.1364/OE.19.002910
  20. H. Wei, Z. Wang, X. Tian, M. Kall, and H. Xu, "Cascaded logic gates in nanophotonic plasmon networks," Nature Commun. 1388, 1-5 (2011).
  21. I. S. Maksymov, "Optical switching and logic gates with hybrid plasmonic-photonic crystal nanobeam cavities," Phys. Lett. A 375, 819-921 (2011).
  22. G. Y. Oh, D. G. Kim, and Y. W. Choi, "All-optical logic gate using waveguide-type SPR with Au/ZnO plasmon stack," in Proc. Opto Electron. and Commun. Conference (Japan, 2010), pp. 374-375.
  23. Q. Xu and M. Lispon, "All-optical logic based on silicon micro-ring resonators," Opt. Express 15, 924-929 (2007). https://doi.org/10.1364/OE.15.000924
  24. T. K. Liang, L. R. Numes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaetrs, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using twophoton absorption in silicon waveguides," Opt. Commun. 256, 171-174 (2006).
  25. J. H. Kim, B. K. Kang, Y. H. Park, Y. T. Byun, S. Lee, D. H. Woo, and S. H. Kim, "All-optical AND gate using XPM wavelength converter," J. Opt. Soc. Korea 5, 25-28 (2001). https://doi.org/10.3807/JOSK.2001.5.1.025
  26. S. Kaur and R. S. Kaler, "Ultrahigh speed reconfigurable logic operations based on single semiconductor optical amplifier," J. Opt. Soc. Korea 16, 13-16 (2012). https://doi.org/10.3807/JOSK.2012.16.1.013
  27. T. Yabu, M. Geshibo, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2009).
  28. Y. H. Pramono and Endarko, "Nonlinear waveguide for optical logic and computation," J. Nonlin. Opt. Phys. and Mater. 10, 209-222 (2001). https://doi.org/10.1142/S0218863501000553
  29. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010). https://doi.org/10.1364/OE.18.017922
  30. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, "The transmission characteristics of surface plasmon polaritons in ring resonator," Opt. Express 17, 24096-24101 (2009). https://doi.org/10.1364/OE.17.024096
  31. Y. Hwang, J. E. Kim, H. Y. Park, and C. S. Kee, "Plasmonic stop band formation in a metal-insulator-metal ring with a narrow gap," J. Opt. 13, 075006-5 (2011). https://doi.org/10.1088/2040-8978/13/7/075006
  32. A. Boltasseva, "Plasmonic components fabrication via nanoimprint," J. Opt. A: Pure Appl. Opt. 11, 114001-114012 (2009). https://doi.org/10.1088/1464-4258/11/11/114001
  33. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, AZ, USA, 1989).
  34. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. (Artech House, Boston, MA, USA, 2005).
  35. V. P. Nelson, H. T. Nagel, B. D. Carrol, and J. D. Irwin, Digital Logic Circuit Analysis and Design (Prentice Hall, NJ, USA, 1995).
  36. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides," Opt. Express 13, 9652-9659 (2005). https://doi.org/10.1364/OPEX.13.009652

Cited by

  1. Performance Analysis of a High-Speed All-Optical Subtractor using a Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.065
  2. A Novel Plasmonic Sensor Based on Metal–Insulator–Metal Waveguide With Side-Coupled Hexagonal Cavity vol.7, pp.2, 2015, https://doi.org/10.1109/JPHOT.2015.2419635
  3. All-optical logic gates based on nonlinear plasmonic ring resonators vol.54, pp.26, 2015, https://doi.org/10.1364/AO.54.007944
  4. Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.466
  5. L-shaped filter, mode separator and power divider based on plasmonic waveguides with nanocavity resonators vol.9, pp.6, 2015, https://doi.org/10.1049/iet-opt.2014.0094
  6. All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier vol.19, pp.3, 2015, https://doi.org/10.3807/JOSK.2015.19.3.222
  7. Plasmonic Directional Couplers Based on Multi-Slit Waveguides vol.12, pp.3, 2017, https://doi.org/10.1007/s11468-016-0303-5
  8. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities vol.16, pp.12, 2016, https://doi.org/10.3390/s16101730
  9. Tunable plasmonic filter with circular metal–insulator– metal ring resonator containing double narrow gaps vol.86, pp.5, 2016, https://doi.org/10.1007/s12043-015-1127-0
  10. All-optical XOR and NAND logic gates based on plasmonic nanoparticles vol.392, 2017, https://doi.org/10.1016/j.optcom.2017.02.007
  11. Investigating the optical AND gate using plasmonic nano-spheres vol.15, pp.1, 2016, https://doi.org/10.1007/s10825-015-0747-4
  12. Plasmonic circuits for manipulating optical information vol.6, pp.3, 2017, https://doi.org/10.1515/nanoph-2016-0131
  13. A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet vol.21, pp.23, 2013, https://doi.org/10.1364/OE.21.028083
  14. Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter vol.18, pp.3, 2014, https://doi.org/10.3807/JOSK.2014.18.3.261
  15. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities vol.16, pp.5, 2016, https://doi.org/10.3390/s16050706
  16. All-optical logic gates in plasmonic metal–insulator–metal nanowaveguide with slot cavity resonator vol.11, pp.2, 2017, https://doi.org/10.1117/1.JNP.11.026001
  17. Applications of ultracompact aperture-coupled plasmonic slot cavity with spectrally splitting capability vol.12, pp.01, 2018, https://doi.org/10.1117/1.JNP.12.016010
  18. Optical Toffoli and Feynman reversible gates designing using DNA transmission lines vol.50, pp.8, 2018, https://doi.org/10.1007/s11082-018-1590-1
  19. Nanoscale all-optical logic devices vol.62, pp.4, 2019, https://doi.org/10.1007/s11433-018-9289-3
  20. Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities pp.1751-8776, 2019, https://doi.org/10.1049/iet-opt.2018.5098