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Abstract—A fully-integrated low power K-band radar 

transceiver in 130 nm CMOS process is presented. It 

consists of a low-noise amplifier (LNA), a down-

conversion mixer, a power amplifier (PA), and a 

frequency synthesizer with injection locked buffer for 

driving mixer and PA. The receiver front-end 

provides a conversion gain of 19 dB. The LNA 

achieves a power gain of 15 dB and noise figure of 5.4 

dB, and the PA has an output power of 9 dBm. The 

phase noise of VCO is -90 dBc/Hz at 1-MHz offset. 

The total dc power dissipation of the transceiver is 

142 mW and the size of the chip is only 1.2 × 1.4 mm
2
.  

 

Index Terms—CMOS integrated circuit, k-band, 

millimeter-wave, radar, transceiver, low-noise 

amplifier, power amplifier 

I. INTRODUCTION 

The car radar sensor is known to be a most effective 

way to avoid critical traffic accidents and assist driving 

convenience. Compared to other radars used in aerospace 

and military systems, car radar sensors should have small 

volume and consume low power. More importantly, low 

cost implementation is essential to be equipped even in 

compact cars. A frequency modulated continuous-wave 

(FMCW) radar is a good candidate for adaptive cruise 

control (ACC), lane change assist (LCA) and Stop-and-

Go system [1, 2]. Recent development of the long range 

radar system has moved to W-band around 77-GHz, but 

the cost issue does not seem to be easily solved due to 

high costs for IC fabrication, packaging and testing. 

Considering manufacturing costs, the radar sensors using 

24-GHz ISM band can still be a viable alternative at the 

expense of the detection range. In addition, K-band radar 

transceiver can be used for various applications in 

security and industry. K-band radar transceiver circuits 

have been already reported using SiGe technologies [3, 

4]. However, considering the level of integration, power 

consumption, manufacturing cost for mass production, 

the CMOS technology seems to be more competitive 

than other technologies for 24-GHz ISM band 

applications because successful design results have been 

reported using matured 0.13 µm technology [5, 6]. 

Though the 0.13 µm CMOS technology shows the 

maximum operating frequency around 80-GHz, it is still 

challenging to design a low power transceiver for 24-

GHz applications to meet the gain and power 

specifications. Therefore, this work utilizes gain boosting 

technique in the receiver design and adopts injection 

locked buffer as a PA driver, which enables the low 

power operation and chip size reduction. 

This paper is organized as follows. Section II presents 

the transceiver architecture and its building blocks. 

Section III shows the experimental results. Finally, 

Section IV concludes this work. 

II. TRANSCEIVER DESIGN 

The transceiver architecture is shown in Fig. 1, which 

includes receiver, transmitter, voltage controlled 

oscillator, and integer-N phase-locked loop (PLL). The 

reference clock (fref) is generated by an external direct 

digital frequency synthesizer (DDFS) to create a 
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frequency modulation signal. The PLL loop bandwidth is 

set to 1 MHz to improve the output chirp linearity of the 

PLL and suppress the spurs [7]. 

 

1. Receiver 

 

Fig. 2 shows the schematic of the receiver which 

includes LNA for amplification of the received signal 

from the antenna with low noise and mixer for frequency 

down-conversion. The LNA consists of two stages. The 

first stage adopts the common source (CS) configuration 

to improve noise figure and the second stage uses a 

cascode structure. Since the single FET only shows the 

MAG below 9-dB, it is not easy to attain the LNA gain 

of two stage over 15-dB without excess power 

consumption due to the loss of matching networks. To 

boost the gain, the design introduces a new and simple 

positive feedback method utilizing proximate magnetic 

coupling between two load inductors L1 and L2 as shown 

in Fig. 2. The phase change in the cascode stage has an 

important role to determine the gain and resonant 

frequency of the magnetic feedback. The phase change 

should be less than – 90° to achieve the desired feedback 

effects and it inherently causes by RC delay. The 

magnetic coupling can be achieved simply by the close 

placement of two inductors without shield guards as 

shown in the part of LNA in Fig. 3 which in turn reduces 

the chip size. The required distance between two 

inductors is determined using full-wave electro-magnetic 

simulation. It is observed that the operating frequency 

can be enhanced compared to the design without 

feedback and the gain is increased by 3 dB as confirmed 

in Fig. 4(a) without the increase of power consumption 

and any additional circuitry. After the LNA, a single 

balanced mixer is used to reduce the loading of LO port 

and simplify the layout. In radar systems, LO to IF feed-

through can be easily eliminated by using bypass 

capacitors C6 and C7 because the IF (beat) frequency in 

the FMCW radar system is usually below 1 MHz and 

much lower than the LO frequency. The current bleeding 

technique using the PMOS M5 reduces the flicker noise, 

which also plays a role of transconductance cell to 

enhance the conversion gain. The inductor L3 is used to 

neutralize the parasitic source and drain capacitances at 

the common-node of the switching stage and to reduce 

the indirect flicker noise [8]. Therefore, it improves the 

conversion gain and reduces the noise contribution by the 

switching stage. 

 

2. Transmitter 

 

The transmitter is composed of the PA for increasing 

the power of a signal. The maximum allowable power 
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Fig. 1. FMCW radar transceiver architecture. 
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Fig. 2. Schematic of receiver. 
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Fig. 3. Schematic of DA and PA. 
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Fig. 4. (a) Equivalent circuit of the PA output and (b) load-pull 

simulation result. 
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limit and the corresponding measurement procedures for 

24-GHz radar systems are defined in the ETSI standard 

EN 302 288-1 [9]. Within ISM band, the peak equivalent 

isotropic radiated power (EIRP) is limited to 20 dBm, 

which includes the gain of the transmitting antenna (GTX) 

and  the actual transmitting power (PTX) as follows [10], 

 

 ( ) ( ) ( )
EIRP TX TX

P dBm P dBm G dBm= +   (1) 

 

Therefore, a PA with 10 dBm output power is 

sufficient to achieve the required maximum radar range. 

The designed differential PA is shown in Fig. 3. It 

includes a drive amplifier (DA) for individual test. But, 

the PA integrated in the transceiver is directly driven by 

the injection buffer as explained in II-3 instead of the DA, 

which reduces the power consumption and chip area. A 

common-source (CS) amplifier is used as a unit power 

cell. Due to the low supply voltage, CS structure is more 

advantageous than cascode stage for higher efficiency 

and better linearity. The output and the inter-stage 

matching networks utilize a transformer to achieve power 

matching and ESD protection. The transformer and 

output pad capacitance consist the matching circuitry to 

transform 50 Ω load to the optimum load impedance that 

maximizes output power, efficiency and ensures stability. 

Fig. 4 presents the equivalent circuit of the PA output 

and the load-pull simulation result. The transformer is 

designed using full-wave electromagnetic simulator. 

Stability is a prime consideration in PA design. A 

stabilization network composed of shunt resistor and 

capacitor is added at the gate of each transistor. To 

ensure common mode stability at low frequencies, an 

additional R-C network is used at the center-tap of the 

transformer. 

 

3. VCO, Injection-Locked Buffer, and Power Divider 

 

Fig. 5 shows the VCO and injection-locked buffer. 

The VCO is designed to oscillate at 24-GHz and its 

output is fed to the buffer and the first divider in the PLL 

directly. The buffer should provide a large voltage swing 

for driving mixer and PA. Since the mixer and PA show 

large capacitive loading, the buffer should be designed 

with a sufficiently large transistor which consumes large 

power. However, the transistor size of the buffer is 

limited by the VCO resonance frequency and tuning 

range. As the oscillating frequency increases, the input 

capacitances of the buffer burden the VCO substantially. 

To reduce the buffer loading, multi-stage buffer 

amplifiers can be used with subsequent size and power 

scaling, but they increase power consumption and chip 

size. To overcome the above problem, this work adopts 

an injection-locked buffer. The injection-locked 

operation is an attractive technique to obtain a large 

voltage swing with low power consumption. Furthermore, 

it can reduce capacitive loading to the VCO. The 

injection amplifier is composed of M4 and M5 with 

moderate width of 20 µm. The additional cross-coupled 

pair composed of M6 and M7 increases gain and voltage 

swing. Therefore, the buffer can drive the mixer and PA 

with an enough voltage swing under low power 

consumption, even with the small sizes of M4 and M5. 

When the cross coupled pair is used, stability is a critical 

issue to avoid self-oscillation. However, it is not a 

problem in FMCW radar applications. If the self-

oscillation frequency of the buffer can be pulled by the 

injection from the VCO, the radar can work properly. 

The frequency of the self-oscillating buffer can 

synchronize with the frequency of the injected signal 

from the VCO as explained in [11], 
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Fig. 5. (a) Schematic of VCO and injection-locked buffer and 

(b) the structure of the power divider. 
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where ωVCO and ω0 are the frequencies of the VCO and 

the buffer, respectively. The symbol ∆ωlock represents 

half of the entire locking range. If the self-oscillating 

buffer satisfies conditions (2) and (3), its oscillation 

frequency follows the VCO frequency. 

The load of the injection-locked buffer is implemented 

with the three-coil transformer as shown in Fig. 5(b). The 

transformer distributes the buffer power to the mixer and 

the PA. By using the transformer, the chip size can be 

reduced and the layout is much more simplified, since 

the transformer provides a simple bias network through 

the common-node and enables ac-coupling without 

capacitors. The top metal layer is used for the 

transformer layout to decrease the resistive loss. 

 

4. PLL 

 

The integer-N PLL is used to precisely define the 

output frequency of the VCO. It consists of frequency 

dividers, phase frequency detector, charge pump and 

loop filter. The injection-locked frequency divider is 

used as the first divider stage. The schematic of the 

injection-locked frequency divider is shown in Fig. 6(a), 

and its operation is presented in Fig. 6(b). It has two 

injection mechanisms depending on the signal injection 

path. The injection signal is ac-coupled to the gate of M1 

and M2. One injection path is through the transistor M1. 

When the positive signal is injected into the transistor M1, 

the voltage of the node X is decreased. As the injection 

voltage increases, the gate-source voltages of the 

transistors M3 and M6 become to exceed the threshold 

voltage. As a result, the diode-connected transistors M3 

and M6 turn on and the differential outputs of the divider 

are connected with low impedance path. Therefore, the 

output is forced to zero and the zero-crossing of the 

divider output is synchronized with the VCO signal. 

On the other hand, the other injection path is through 

the transistor M2. In this case, the divider works like a 

conventional injection-locked divider. By the dual-

injection scheme, the locking range can be enhanced. 

Additionally, the diode-connected transistors M3 and M6 

make the locking range wider by degrading the quality 

factor of the tank. Thus, the divider has sufficient design 

margin to cover the entire VCO tuning range. 

The second and third frequency dividers are based on 

master-slave D-type flip-flop using current-mode logic 

structure (CML) for high speed operation [12]. The other 

dividers are implemented with true-single-phase-clock 

(TSPC) divider considering its simple architecture, 

compact implementation, and small power consumption 

for moderate speed [13]. For complete PLL operation, 

the tri-state phase frequency detector with 50 MHz 

reference frequency and the second-order loop filter are 

adopted. 

III. EXPERIMENTAL RESULTS 

The transceiver chip is fabricated in 130 nm CMOS 

technology of Dongbu HiTek with 1-poly and 8-metal 

layers with the top metal thickness of 3.3 µm. The die 

microphotograph of the chip is shown in Fig. 7 and its 

size is 1.2 × 1.4 mm
2 including pads ESD protected. 
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Fig. 6. (a) Schematic of 1st divider, and (b) its operation. 
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To verify the performance of each block, we designed 

and tested the LNA and PA individually. The chips are 

measured using on-wafer probing. The input and output 

return losses of LNA are shown in Fig. 8(b). The LNA 

has a peak gain of 15.42 dB with 5.4 dB noise figure at 

24-GHz. The LNA without gain boosting shown in Fig. 

8(a) is simulated with same size transistors, bias current 

and passive components, only except the coupling 

between inductors. The PA has a saturation power of 15 

dBm with 16% peak PAE and the output P1dB is 9.4 

dBm. 

The transceiver chip is mounted directly on the printed 

circuit board to supply the dc biases. RF signals such as 

LNA input and PA output are measured using wafer 

probing. Fig. 10 shows measurement results of the 

transceiver. The voltage conversion gain of the receiver 

is 19 dB and the transmitter output power is 9 dBm 

considering 4 dB cable loss at 24-GHz. The 1dB 

compression point of the LNA is -27 dBm. The 

frequency synthesizer has phase noise of -90 dBc/Hz at 

1-MHz offset and -115 dBc/Hz at 10-MHz offset. 

Unfortunately, oscillation frequency of the VCO is 

slightly lower than the target frequency at ISM band. The 

frequency shift is possibly caused by the small size 

inductor for the VCO design because small size devices 

usually have low modeling accuracy due to de-

embedding and measurement error. 

The transceiver consumes a total power of 142 mW, of 

PA

LNA+Mixer
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Fig. 7. Chip microphotograph. 
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Fig. 8. LNA simulated and measured results: (a) small-signal 

gain, and (b) input and output return losses. 
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Fig. 9. PA simulated and measured results: (a) small-signal, 

and (b) large-signal. 
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Fig. 10. Transceiver measurement results: (a) IF spectrum with 

RF input power of -74 dBm including cable loss, (b) PA output 

spectrum with cable loss of 4 dB, and (c) phase noise. 
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which 74 mW is dissipated in the injection-locked driver 

amplifier and the PA, 10 mW in LNA, 14 mW in the 

mixer and buffers, remaining power in the frequency 

synthesizer. 

Table 1 summarizes the transceiver performance 

compared with the published K-band radar chipsets. The 

transceiver consumes less power and smaller chip size 

with compatible performance. 

IV. CONCLUSIONS 

A fully-integrated low power K-band radar transceiver 

is presented in this paper. The voltage conversion gain of 

the receiver is 19 dB, and the output power of the 

transmitter is 9 dBm. By adopting low power design, the 

total power consumption is significantly reduced. The 

transceiver will enable integrated low-cost FMCW radar 

system design. 
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