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Abstract—For a mesa-isolated small geometry SOI 

MOSFET, the potentials in the silicon film, front, 

back, and side-wall oxide layers can be derived three-

dimensionally. Using Taylor’s series expansions of the 

trigonometric functions, the derived potentials are 

written in terms of the natural length that can be 

determined by using the derived formula. From the 

derived 3-D potentials, the minimum values of the 

front and the back surface potentials are derived and 

used to obtain the closed-form expressions for the 

front and back gate threshold voltages as functions of 

various device parameters and applied bias voltages. 

Obtained results can be found to explain the drain-

induced threshold voltage roll-off and the narrow 

width effect of a fully depleted small geometry SOI 

MOSFET in a unified manner.    

 

Index Terms—3-D analytical SOI MOSFET model, 

threshold voltage roll-off, short channel effect, 

narrow width effect, natural length    

I. INTRODUCTION 

 

Since silicon-on-insulator (SOI) MOSFETs are 

inherently possessed of several superior electrical 

characteristics over bulk-type MOSFETs, such as better 

isolation between source (drain) and substrate, punch 

through suppression, enhanced current driving capability, 

and suppressed short channel effects [1-6], they are 

nowadays facilitating the integration level of VLSI up to 

ULSI. In order to achieve extremely high integration in 

ULSI, the geometry of a SOI MOSFET is very small by 

reducing the channel (gate) width as well as the channel 

length. Then for a mesa-isolated small geometry fully 

depleted (FD) SOI MOSFET, the potential in the silicon 

film (body) becomes strongly coupled with the potentials 

in the front, back, and side-wall oxide layers. Thus, in 

order to have accurate and rigorous modeling the 

characteristics of a mesa-isolated small geometry SOI 

MOSFET, three-dimensional analysis should be required. 

Especially, the narrow width effect and the short channel 

effect will offer combined influence on the threshold 

voltage. The threshold voltage is very crucial parameter 

since it can estimate several features of a MOSFET such 

as channel conductance, drain saturation voltage/current, 

turn-on/off speed, etc. Recently, by extending the two-

dimensional (2-D) analytical models [7-13] up to three-

dimensional (3-D) analysis, 3-D models [14-17] for the 

threshold voltage have been suggested. However, 

employed 2-D analytical models were somewhat 

oversimplified in the sense that the potentials in both 

front and back oxide layers were derived by using the 

gradual channel approximation (GCA), the potential in 

the silicon body was derived by decomposing it into a 1-

D Poisson’s equation and a 2-D Laplace’s equation. In 

solving the 2-D Laplace’s equation, rather complicated 

infinite series expansions have been required to satisfy 

the suggested equi-potential boundary conditions at both 

planes of source-body and drain-body n p
+ −  junctions. 

Hence, the front and back surface potentials have been 
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expressed as certain infinite series expansions, which 

have been approximated by taking only one term in the 

derivation of the minimum front and back surface 

potentials. These approximations seem to be somewhat 

oversimplified and inconsistent with the suggested equi-

potential boundary conditions. In the 3-D models [14, 

17], complicated double summations of infinite series 

expansions have been used for deriving the 3-D potential 

in the silicon body. However, since the approximation of 

the double summations of infinite series by taking only 

one term seems to be rather oversimplified and the 

analytical logic of the above 3-D models will be 

collapsed in case that one of oxide layers is fairly thick, 

the derived expressions for the front and back gate 

threshold voltages seem to be more or less ambiguous.  

In this paper, starting from the potential expressions 

obtained by using the GCA and updating them iteratively 

by taking into account their -y  and -z variations, we 

can derive the potentials in the silicon body, front, back, 

and side-wall oxide layers three-dimensionally. From the 

derived 3-D potentials, the minimum values of the front 

and back surface potentials can be derived and used to 

obtain the closed-form expressions for the front and back 

gate threshold voltages as functions of various device 

parameters and applied bias voltages.  

This paper is organized as follows. In Section II, the 

basic model formulation is described. In Section III, 

some computation results and discussion are contained. A 

summary and a conclusion are in Section IV. 

II. MODEL FORMULATION 

Schematic cross section views of a mesa-isolated fully 

depleted SOI MOSFET are shown in Figs. 1(a) and 1(b). 

Here, x  is the channel-depth directed coordinate from 

the front oxide/silicon interface toward the silicon body; 

y  is the longitudinal coordinate from the source side 

end toward the drain; z  is the transversal coordinate 

from the middle of the silicon film toward one side end; 

L  and w  are the channel length and width, 

respectively; si
t  is the silicon film thickness; ,of

t  ,ob
t  

and ow
t  are the thicknesses of the front, back, and side-

wall oxide layers, respectively; ,GS
V  ,BS

V  and DS
V  

are front gate, back gate, and drain voltages, respectively. 

In order to establish an accurate and rigorous model for 

the front and back threshold voltages of a mesa-isolated 

small geometry SOI MOSFET, let us assume that the 

device structure is symmetric about the axis of 0,z =  

the space charge densities in the oxide layers are 

negligible, and the silicon body is uniformly p-doped and 

fairly thin so that the silicon body is fully depleted in the 

sub-threshold regime. Then we can consider the 

following 3-D Laplace/Poisson’s equation: 

 

 

2 2 2

2 2 2

0,        in the oxide layers,

,  in the silicon body, A

si

qN
x y z

ψ ψ ψ

ε


∂ ∂ ∂ 

+ + = 
∂ ∂ ∂ 



 (1) 

 

where ( , , )x y zψ  is the 3-D electrostatic potential, q  

is the elementary charge, A
N  is the uniform acceptor 

density in the silicon body, and si
ε  is the dielectric 

constant of silicon. For convenience, we separately 

denote the potentials in the silicon film, front, back, and 

side-wall oxide layers as ( , ), ,
si x y zψ  ( , ), ,

of x y zψ  

( , ), ,
ob x y zψ  and ( , ), ,

ow x y zψ  respectively. Boundary 

conditions subject to Eq. (1) will be as follows: 

 

(a)  

 

 

(b) 

Fig. 1. (a), (b) Schematic cross-section views of a mesa-

isolated n-channel SOI MOSFET to be modeled.  
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'

( , , ) ,
of

of GS msf GS
t y z V Vψ φ− = − =       (2a) 

 
'( , , ) ,ob

si ob BS msb BS
t t y z V Vψ φ+ = − =       (2b) 

 
'

( , , / 2 ) ,
ow

ow GS msf GS
x y w t V Vψ φ± ± = − =     (2c) 

 (0, , ) (0, , ) ( , ),si of

s
y z y z y zψ ψ ψ= =     (3a) 

 ( , , ) ( , , ) ( , ) ,si ob

si si b
t y z t y z y zψ ψ ψ= =     (3b) 

 ( , , / 2) ( , , / 2) ,si owx y w x y wψ ψ± = ±      (3c) 

 
0 0

,
si of

ssfox

si oxx x

Q

x x

εψ ψ
ε ε

= =

 ∂ ∂
= −  ∂ ∂ 

      (4a) 

 ,

si si

si ob

ox ssb

si oxx t x t

Q

x x

εψ ψ
ε ε

= =

 ∂ ∂ = +
 ∂ ∂ 

     (4b) 

 
/ 2 / 2

,
si ow

ox ssw

si oxz w z w

Q

z z

εψ ψ
ε ε

=± =±

 ∂ ∂
= ±  ∂ ∂ 

    (4c) 

 

where msf mf s
φ φ φ= −  ( )

msb mb s
φ φ φ= −  is the difference 

between the work functions mf
φ ( )

mb
φ  for the front 

(back) gate electrode and s
φ  for the silicon body; 

( , )
s
y zψ  and ( , )

b
y zψ  are the front and back surface 

potentials, respectively; ox
ε  is the dielectric constant of 

oxide; and ssf
Q ( ),  

ssb ssw
Q Q  is the surface state charge 

areal density at the front (back, side-wall) oxide/silicon 

interface. Starting from the potentials obtained by 

neglecting both 
2 2 2 2( , ) / ( , ) /

s s
y z y y z zψ ψ∂ ∂ + ∂ ∂  and 

2 2 2 2( , ) / ( , ) / ,
b b
y z y y z zψ ψ∂ ∂ + ∂ ∂  and updating the 

potential expressions iteratively by taking into account 

their -y  and -z variations, we can write ( , ), ,
of x y zψ  

( , ), ,
ob x y zψ  and ( , ),

si x y zψ  in the 3-D expressions: 

 

 

( )

( ) ( ) ( )

( ) ( ) ( )

' '

3
2

5 3
2 4 2

( , , ) ,

1
,

3!

1 10 7
( , )
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,

ofof
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of

of of of yz s

of
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x t
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ψ ψ

ψ

ψ
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(5) 
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'
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5 3
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ob

ob ob ob yz b

ob

ob ob ob ob ob yz b

ob

x t
x y z V y z V

t

x t t x t y z
t

x t t x t t x t y z
t

ψ ψ

ψ

ψ

−
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 (6) 

( ) ( )
'

'( , , ) , ,
2

si A
s b

sisi si

qN x x
x y z xx y z y z

tt
ψ ψ ψ

ε
= − +    

( ) ( ) ( ) ( )

( )

( )

3 2 23''

35 2 4 2'''

2 3 4 25

1 1
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3! 3!

1 10 7
,
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1 710
, ,

35! 3

si yz s si yz b

si si

si si yz s

si

si si yz b

si
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t t

x t x t x y z
t

x t x t x y z
t

ψ ψ

ψ

ψ
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 

 
+ − + ∆ + ⋅⋅⋅ 

 

 (7) 

 

where '
,si

x x t= −  
2 2 2 2
/ / ,

yz
y z∆ = ∂ ∂ + ∂ ∂  and 

2

yz
∆ =  

( )2
2 2 2 2
/ / .y z∂ ∂ + ∂ ∂  Using Eqs. (5), (6), and (7), we can 

rewrite Eqs. (4a) and (4b) as: 
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where / ,ox si
η ε ε=  / ,

FBf msf of ssf ox
V t Qφ ε= −  and FBb

V =  

/ .
msb ob ssb ox

t Qφ ε−  For the conditions that Eqs. (8) and 

(9) satisfy simultaneously, we may suggest that 

 

 [ ]
2 2

2 2 2

1
( , ) ( , ) ,
s s s

x

y z y z
y z

ψ ψ
λ

 ∂ ∂
+ = −Φ 
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 [ ]
2 2

2 2 2

1
( , ) ( , ) .

b b b

x

y z y z
y z

ψ ψ
λ
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Then we can rewrite Eqs. (8) and (9) in the forms: 
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where we have replaced 31/ / 3 / 45θ θ θ− − − ⋅⋅ ⋅  and 
31/ / 6 7 / 360θ θ θ+ + + ⋅⋅ ⋅  with cotθ  and csc ,θ  

respectively. Combining Eqs. (12) and (13), we can get 
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Since 31/ / 3 / 45 cotθ θ θ θ− − − ⋅⋅ ⋅ =  is valid in the 

range of ,θ π<  the root of Eq. (16) will be derived 

uniquely in the range of { }1
max , , .x si of obt t tλ π −>  For a 

symmetric dual gate (SDG) MOSFET ( ,
of ob ox
t t t= =  

,
FBf FBb FB
V V V= =  GS BS

V V= ), we can have 

 

 ,
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A ox si

s b GS FB
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ε
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2

si ox

x x

t t
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In case that of x
t λ<<  and ,

ob x
t λ<<  Eq. (16) can be 

simplified as 
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which was used in [14, 17]. Since most of mathematics 

used in [14, 17] are strictly based on Eq. (19), the models 

[14, 17] will be very restricted 3-D models. Furthermore, 

in [14, 17], ( , ),
si x y zψ  has been expressed as a variable 

dependent on x  in the sinusoidal fashion and on z  in 

the hyperbolic fashion. This expression would not be 

adequate when considering the fact that x  and z  are 

exchangeable, especially in the case of .
.

of ob
t t=    

Meanwhile, considering that 
0

( , ) / 0s z
y z zψ

=
∂ ∂ =  

and 
0

( , ) / 0,b z
y z zψ

=
∂ ∂ =  and also considering that the 

-z dependency of ( , ),
si x y zψ  will be very similar to the 

-x dependency, we may solve Eqs. (10) and (11), 

respectively, in the forms: 
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with 
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Then we can rewrite Eqs. (5), (6), and (7) in the forms: 
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  (29) 

 

Using Eqs. (27) and (28) into Eq. (4c), we may have 

 

'
' 2

1
tan cot ( , )

2

,
2 3

ow

w

z z z

A A

s b GS FBw ow

ow si si si si

tw
x y

qN qNx x
xx V V t

t t t

η ϕ
λ λ λ

η
ε ε

    
−    

     

 
= − Φ + Φ − + − 

 

  

  (30) 

  

where / .
FBw msf ow ssw ox
V t Qφ ε= −  Considering that the 

electrostatic corner effects, we may assume that FBw
V  is 

varied with x  in order to satisfy that  

 

 '
2 '

( )

.
3 2

FBw

A A

ow s b GS

si si si si

V x

qN qN x x
t xx V

t tε ε

 
= − − Φ + Φ − 

 

  (31) 

 

Then we have 

 

 tan cot
2

.ow

z z

tw
η

λ λ
=

   
   
   

          (32) 

Considering that ( )3 5
/ 3 2 /15 tanθ θ θ θ+ + + ⋅⋅ ⋅ =  and 

( ) ( ) ( )3

1/ 2 2 / 3 2 / 45 cot 2θ θ θ θ− − − ⋅ ⋅ ⋅ =  can be valid in 

the range of / 2,θ π<  z
λ  will be derived uniquely in 

the range of { }1
max , .

z ow
w tλ π −>  From Eq. (32), we 

get 

 

 2

.
1

2 sin
2

z z

ow

z

w w
w t

λ λ

η η
η λ

∂
=

∂    
+ + −   

     

   (33) 

 

Using Eqs. (22) and (23) and performing the similar 

algebraic procedure given in [18, 19], the minimum 

values of ( , 0)
s
yψ  and ,( , 0)

b
yψ  i.e., ,mins

ψ  and 

,minb
ψ  can be derived as 

 

( ) ( ) ( )
( )

,min

2

0
0 1 tanh csch ,

2 0

s s

sc sc

sc s

sc s

LL L

ψ

ψ ψ
ψ

λ ψ λ

= Φ

 −    + −Φ − −      −Φ     

 

  (34) 

( ) ( ) ( )
( )

,min

2

0
0 1 tanh csch .

2 0

b b

bc bc

bc b

bc b

LL L

ψ

ψ ψ
ψ

λ ψ λ

= Φ

 −    + −Φ − −      −Φ     

 

  (35) 

 

In the sub-threshold regime, ohmic drops due to the 

parasitic source and drain resistances can be negligible. 

Thus, we may write (0) (0)
sc bc bi

Vψ ψ≈ ≈  and 

( ) ( ) ( ) ( ) ,0 0sc sc bc bc DS
L L Vψ ψ ψ ψ− ≈ − ≈  where bi

V  is 

the built-in voltage across the n p
+ −  source (drain)/ 

body junction. Let us suggest that the sub-threshold 

conditions of the front and back surface channels, i.e., 

GS Tf
V V≤  and ,BS Tb

V V≤  are equivalent to 

,min
2

s B
ψ ≤ Φ  and ,min

2 ,
b B

ψ ≤ Φ  where Tf
V  and Tb

V  

are the front and back gate threshold voltages, 

respectively, and ( ) ( )/ ln /
B B A i

k T q N nΦ =  is the 

Fermi potential of the silicon body ( B
k  is Boltzmann’s 

constant, T  is the absolute temperature, and i
n  is the 

intrinsic carrier density of silicon). Then substituting Eqs.  

(34) and (35) into ,min
2

s B
ψ ≤ Φ  and ,min 2 ,b B

ψ ≤ Φ  

respectively, we can have 2
s B

ζΦ ≤ Φ −  and 

2 ,
b B

ζΦ ≤ Φ −  where ζ  is given by  

 

( ) ( )

2

2

1
2 csch

2 2
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2 2

bi DS B
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L
V V

L L
V V V

ζ
λ

λ λ

   
= + − Φ   
   

   
+ − Φ + − Φ    

   

 

  (36) 
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which approaches zero as L  is much larger than .λ  

Plugging Eqs. (14) and (15) into 2
s B

ζΦ ≤ Φ −  and 

2 ,
b B

ζΦ ≤ Φ −  we can derive finally Tf
V  and Tb

V  as 

  

 

( )1 2
2

       ,
2

A of si of

Tf FBf B

ox si ob

of A ob si

BS FBb

si ob ox

qN t t t
V V

t t

t qN t t
V V

t t

ζ
ε η

η ε

 
= + + Φ −+ 

+ 

 
− − − 

+  

(37) 

 

( )1 2
2

       .
2
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GS FBf

si of ox
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V V

t t
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ε η

η ε
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= + + Φ −+  + 

 
− − − 

+  

 (38) 

 

From Eq. (37), we have 
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∂ ∂
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,
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1
Tf of z
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V L

w u w

t

t t

λζ λ

λη

∂ ∂∂
=

∂ ∂ ∂

 
− + 

+ 
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where ( )/ 2u L λ=  and 

 

( )( ) ( )

3

2 3

1
2 2 cosh csch

2

2 2 1 cosh csch .

bi DS B

bi B bi DS B

V V u u
u

V V V u u

ζ∂  
= − + − Φ ∂  

− − Φ + − Φ +

(41) 

 

Similarly, /
Tb
V L∂ ∂  and /

Tb
V w∂ ∂  can be written by 

exchanging of
t  with ob

t  in Eqs. (39) and (40). From 

Eqs. (37) and (38), we find that Tf Tf Tf
L

V V V
=∞

∆ ≡ −  and 

Tb Tb Tb L
V V V

=∞
∆ ≡ −  are independent of BS

V  and ,
GS
V  

respectively. Also note that Tf
V  and Tb

V  for a 

considerably wide gate device ( / ,z xwλ π λ≈ >>  i.e., 

xλ λ≈ ) coincide with the results given in the 2-D 

analytical model [18].  

Let us consider the case that ,
si
t w=  ,

of ob ow
t t t= =  

and 
' ' .
GS BS
V V=  In this case, the device becomes a 

surrounding gate (gate all around: GAA) MOSFET with 

rectangular silicon pillar or a fin FET. Using Eqs. (18), 

(24), and (32), we get 

 

 tan cot .
2 2 2

si ox
t t

η
λ λ

   
=   

   
        (42) 

 

Approximating Eq. (42) as the following cubic 

equation of 
2 :ξ λ=  

  

 
3 2

1 2 3
0,a a aξ ξ ξ− − − ≈           (43) 

 

where 2 / ,
siox
ttτ =  ( ) ( )

2
2

1
/ 2 2 / / 3 ,

si
a t τ η τ= +   

( ) ( )
4

4

2
/ 2 2 / 3 / 45 ,

si
a t τ η τ= +  and   

( ) ( )
6

6

3
/ 2 2 2 /15 2 / 945 ,

si
a t τ η τ= +   

we can derive λ  as 

 

 1 3 2 3 23 3  ,
3

a
R Q R R Q Rλ ≈ + + + + − +   (44) 

 

where ( )2

2 1
3 / 9Q a a= − +  and ( )3

1 2 1 39 2 27 / 54.R a a a a= + +  

Let us assume that a surrounding gate MOSFET with 

rectangular pillar is somewhat similar to a cylindrical 

surrounding gate MOSFET with / 2 .
s si
r t≈  Then we 

can find that the derived λ  for a rectangular shaped 

surrounding gate MOSFET becomes very similar to the 

result given in [20] where λ  for a cylindrical 

surrounding gate MOSFET has been derived. Thus, we 

may check the validity of Eqs. (20), (21), and (24).   

III. SAMPLE COMPUTATION AND DISCUSSION 

According to the expressions derived in Sec. II, ,λ  

( ,0),
s
yψ  and the front gate threshold voltage Tf

V  are 

computed and plotted in Figs. 2-7. In these computations, 

the following constants are used: / 0.0259 [ ]
B
k T q V=  

10 31.45 10 [ ],in cm−= × 143.9 8.85 10 [ / ],
ox

F cmε −= × × si
ε =  

14
11.8 8.85 10 [ / ],F cm

−= × ×  0.55 [ ],
bi B
V V= +Φ  msf

φ =  

0.55 [ ]
msb B

Vφ = − −Φ  (n+ − poly silicon gates are 

assumed), and 
9 2

6.4 10 [ / ].ssf ssbQ Q C cm
−= = ×  In order 

to compare the presented model results with the 

simulated results given in [9], the values of device 

parameters have been chosen to be the same values used 

in the models under comparison. Since the presented 

model implies that 3-D model for a mesa-isolated SOI 

MOSFET becomes to be very similar to 2-D model in 

case that w  is not very narrow, we have compared our 

simulation results with the results given in the 2-D model 

of [9]. Simulation results given in 3-D models of [14, 17] 

are not compared with the presented model since the 

results in [14, 17] seem to be very complicated and rather 

ambiguous. Solving Eqs. (16) and (32) by means of the 

Newton-Raphson method, we can determine x
λ  and 

z
λ  as the corresponding largest values. It is worth noting 

that λ  becomes smaller than x
λ  and decreases as  
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Fig. 2. Derived / sitλ  according to Eq. (24) is plotted as a 

function of / oww t ( 330obt nm= ). 

 

 

Fig. 3. Surface potential at 0z =  versus /y L  

( 1 ,w mµ= 100 ,sit nm= 350 ,obt nm= 20 ,oft nm= 30 ,owt nm=  
17 31 10 ,

A
N cm−= × 0  ,BSV V=  0  GSV V= ). 

 

 

Fig. 4. Front gate threshold voltage versus channel length 

( 80 ,sit nm=  9.2 ,oft nm=  400 ,obt nm=  17 31 10 ,
A

N cm−= ×  

0  BSV V= ). 

 

 

 

Fig. 5. Front gate threshold voltage versus channel width 

( 80 ,sit nm=  9.2 ,oft nm=  400 ,obt nm=  17 31 10 ,
A

N cm−= ×  

0  BSV V= ). 

 

 

Fig. 6. Front gate threshold voltage versus channel length for 

various values of silicon film thickness ( 80 ,sit nm=  

9.2 ,oft nm=  400 ,obt nm=  17 31 10 ,
A

N cm−= ×  0  BSV V= , 

0.05DSV V= ). 

 

 

Fig. 7. Front gate threshold voltage versus channel length for 

0BSV V=  and 5BSV V= −  ( 80 ,sit nm=  9.2 ,oft nm=  

400 ,obt nm=  17 31 10 ,
A

N cm−= ×  0  BSV V= , 0  DSV V= ). 
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channel width (front gate width) is decreased. In Fig. 2, 

the derived /
si
tλ  for various values of the silicon film 

thickness with 330
ob
t nm=  is plotted as a function of 

/ .
ow

w t  The -y variation of ( ,0)
s
yψ  of a device with 

0.1L mµ=  for 0.1
DS
V V=  and 1

DS
V V=  is plotted 

in Fig. 3. Also in Fig. 3, the derived -y variation of 

( ,0)
s
yψ  of a device with 0.2L mµ=  for 0.1

DS
V V=  

and 1
DS
V V=  is plotted. The derived dependency of the 

front gate threshold voltage Tf
V  on the channel length 

for 0.05
DS
V V=  and 1

DS
V V=  is plotted in Fig. 4, 

where the drain-induced threshold voltage roll-off is 

shown evidently. Derived dependency of the front gate 

threshold voltage on the channel width for 0.05
DS
V V=  

and 1
DS
V V=  is shown in Fig. 5. Derived dependencies 

of the front gate threshold voltage on the channel length 

for various values of silicon body thickness and back 

gate voltage are shown in Fig. 6 and 7, respectively. The 

simulation results from the presented model show a fairly 

good agreement with the results from [9], even though 

very small discrepancy about 0.02
T
V V∆ ≈  is also 

found. Since this discrepancy is almost constant within 

the wide range of channel length, this would have 

resulted from the flat-band voltage shift. In the presented 

model, the potentials can be derived three-dimensionally 

as functions of infinite order of x  and ,z  while in the 

previously suggested 2-D model [18] the potentials were 

derived as functions of fifth-order of .x  Considering 

that the drain-induced threshold voltage roll-off can be 

described accurately from a rigorous derivation of the 

front and back surface potentials, it can be expected that 

the presented model seems to derive the drain-induced 

threshold voltage roll-off fairly accurately. 

IV. CONCLUSIONS 

As shown in Section II, starting from the potential 

expressions obtained by using the GCA and updating 

them iteratively by taking into account their -y  and 

-z variations, we can derive three-dimensionally the 

potentials in the silicon film (body), front, back, and 

side-wall oxide layers of a mesa-isolated fully depleted 

SOI MOSFET. From the derived three dimensional (3-D) 

potential expressions, we can derive the minimum values 

of the front and back surface potentials as closed-form 

expressions. These closed-form expressions seem to be 

much more convenient than the series expressions. 

Finally, using the reasonable physics-based threshold 

criterion, the front and back gate threshold voltages can 

be derived as the closed-form expressions in terms of 

various device parameters and applied bias voltages. It is 

worth noting that the presented model uses fewer 

assumptions and approximations in the analytical model 

procedure. Obtained results can be found to explain the 

drain-induced threshold voltage roll-off and the narrow 

width effect in a unified manner. Consequently, the 

threshold voltage expressions derived in the presented 

model can be used for estimating the front and back gate 

threshold voltages of a short channel fully depleted SOI 

MOSFET within a range of satisfactory accuracy. 
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