DOI QR코드

DOI QR Code

A Study on Two-wavelength Digital Holography Using the Fresnel-Bluestein Transform

프레즈넬-불루스타인 변환을 이용한 2파장 디지털 홀로그래픽 연구

  • Received : 2012.09.06
  • Accepted : 2012.10.22
  • Published : 2012.12.25

Abstract

Dual-wavelength holography has a better axial range than single-wavelength holography, allowing unambiguous phase imaging. The size of a reconstructed image depends on the reconstruction distance and wavelength. The two phase image sizes of different wavelength holograms should be the same in order to apply dual-wavelength holography. The Fresnel-Bluestein transform method is proposed to eliminate the dependence on the reconstruction distance and wavelength. We found that the Fresnel-Bluestein transform is very useful for making different reconstructed image sizes experimentally. Also we applied the Fresnel-Bluestein transform to make the same reconstruction image size in dual wavelength holography.

이 파장 디지털 홀로그래피는 단파장 디지털 홀로그래피에 비해 보다 큰 단차를 얻는데 사용할 수 있다. 이파장 홀로그래피 방법을 이용하기 위해서는 각각의 파장에서 얻은 홀로그램으로부터 재생된 위상 이미지 크기가 동일하여야하는데, 위상 이미지 크기는 재생거리와 파장에 의존한다. 이러한 문제점을 해결하기 위하여 프레즈렐-불루스타인 변환법이 제안되었다. 이변환법은 재생상의 크기를 재생거리와 파장에 의존하지 않고 자유롭게 만들 수 있다. 본 연구에서는 프레즈렐-불루스타인 변환법을 이파장 홀로그래피에 적용하여 파장에 의존하지 않는 동일한 위상 재생상을 얻을 수 있음을 실험적으로 확인하였다.

Keywords

References

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, "Reconstruction of hologram with a computer," Sov. Phys. Tech. 17, 434-444 (1972).
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, "Investigation of- micro-opto-electro-mechanical components with a holographic microscopic interferometer," Proc. SPIE 3396, 238-243 (1998).
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, "Studies of digital microscopic with application to microstructure testing," Appl. Opt. 40, 5046-5051 (2001). https://doi.org/10.1364/AO.40.005046
  5. S. Kim, H. Lee, and J. Son, "Recording of larger object by using two confocal lenses in digital holography," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 14, 244-248 (2003). https://doi.org/10.3807/KJOP.2003.14.3.244
  6. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. Am. A 11, 2011-2015 (1994). https://doi.org/10.1364/JOSAA.11.002011
  7. K. Creath, Y. Cheng, and J. C. Wyant, "Contouring aspheric surfaces using two-wavelength phase-shifting interferometryt," Optica Acta 32, 1455-1464 (1985). https://doi.org/10.1080/713821689
  8. Y. Cheng and J. C. Wyant, "Two-wavelength phase shifting interferometry," Appl. Opt. 23, 4539-4543 (1984). https://doi.org/10.1364/AO.23.004539
  9. H. Cho, D. Kim, W. Kung, S, Shin, and Y. Yu, "Dualwavelength digital holography microscope for BGA measurement using partial coherence source," J. Opt. Soc. Korea 15, 352-356 (2011). https://doi.org/10.3807/JOSK.2011.15.4.352
  10. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-4 (2005). https://doi.org/10.1364/OL.30.002092
  11. T. Kreis, M. Adams, and W. Jüptner, "Methods of digital holography:a comparison," Proc. SPIE 3098, 224-233 (1997).
  12. F. Zhang and I. Yamaguchi, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1688-1670 (2004).
  13. J. Gass, A. Dakoff, and M. K. Kim, "Phase imaging without $2{\pi}$ ambiguity by multiwavelength digital holography," Opt. Lett. 28, 1141-1143 (2003). https://doi.org/10.1364/OL.28.001141
  14. L. Bluestein, "A linear filtering approach to the computation of discrete fourier transform," IEEE Trans. Audio Electroacoust 18, 451-455 (1970). https://doi.org/10.1109/TAU.1970.1162132
  15. J. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel- Bluestein transform," Appl. Opt. 49, 6430-6435 (2010). https://doi.org/10.1364/AO.49.006430
  16. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, USA, 2005)
  17. H. Cho, D. Kim, S. Shin, W. Jang J. Son, and Y. Yu, "Twin-image elimination in an in-line digital holographic microscope," J. Korean Phys. Soc. 52, 1031-1035 (2008). https://doi.org/10.3938/jkps.52.1031
  18. H. Cho, J. Woo, D. Kim, S. Shin, and Y. Yu, "DC suppression in in-line digital holographic microscope on the basis of an intensity-averaging method using variable pixel numbers," Optics & Laser Tech. 41, 741-745 (2009). https://doi.org/10.1016/j.optlastec.2009.01.001