DOI QR코드

DOI QR Code

Synthesis and Conformation of Novel 4'-Fluorinated 5'-Deoxythreosyl Phosphonic Acid Nucleosides as Antiviral Agents

  • Kang, Lien (BK-21 Project Team, College of Pharmacy, Chosun University) ;
  • Kim, Eunae (BK-21 Project Team, College of Pharmacy, Chosun University) ;
  • Choi, Eun Joo (BK-21 Project Team, College of Pharmacy, Chosun University) ;
  • Yoo, Jin Cheol (BK-21 Project Team, College of Pharmacy, Chosun University) ;
  • Lee, Wonjae (BK-21 Project Team, College of Pharmacy, Chosun University) ;
  • Hong, Joon Hee (BK-21 Project Team, College of Pharmacy, Chosun University)
  • Received : 2012.08.22
  • Accepted : 2012.09.12
  • Published : 2012.12.20

Abstract

Efficient synthetic route to novel 4'-fluorinated 5'-deoxythreosyl phosphonic acid nucleosides was described from glyceraldehyde using Horner-Emmons reaction in the presence of triethyl ${\alpha}$-fluorophosphonoacetate. Glycosylation reaction of nucleosidic bases with glycosly donor 14 gave the nucleosides which were further phosphonated and hydrolyzed to reach desired nucleoside analogues. Synthesized nucleoside analogues 18, 21, 25 and 28 were tested for anti-HIV activity as well as cytotoxicity. Adenine derivatives 18 and 21 showed significant anti-HIV activity up to $100{\mu}M$.

Keywords

References

  1. Richman, D. D.; Fischl, M. A.; Grieco, M. H.; Gottlieb, M. S.; Volberding, P. A.; Laskin, O. L.; Leedom, J. M.; Groopman, J. E.; Mildvan, D.; Hirsch, M. S.; Jackson, G. G.; Durack, D. T.; Phil, D.; Lusinoff-Lehrman, S. N. Engl. J. Med. 1987, 317, 192. https://doi.org/10.1056/NEJM198707233170402
  2. Starnes, M. C.; Cheng, Y. C. J. Biol. Chem. 1987, 262, 988.
  3. Lambert, J. S.; Seidlin, M.; Reichman, R. C.; Plank, C. S.; Laverty, M.; Morse, G. D.; Knupp, C.; McLaren, C.; Pettinelli, C.; Valentine, F. T.; Dolin, R. N. Engl. J. Med. 1990, 322, 1333. https://doi.org/10.1056/NEJM199005103221901
  4. Boojamra, C. G.; Parrish, J. P.; Sperandio, D.; Gao, Y.; Petrakovsky, O. V.; Lee, S. K.; Markevitch, D. Y.; Vela, J. E.; Laflamme, G.; Chen, J. M.; Ray, A. S.; Barron, A. C.; Sparacino, M. L.; Desai, M. C.; Kim, C. U.; Cihlar, T.; Mackman, R. L. Bioorg. Med. Chem. 2009, 17, 1739. https://doi.org/10.1016/j.bmc.2008.12.028
  5. Borthwick, A. D.; Biggadike, K.; Paternoster, I. L.; Coates, J. A. V.; Knight, D. J. Bioorg. Med. Chem. Lett. 1993, 3, 2577. https://doi.org/10.1016/S0960-894X(01)80719-8
  6. Biggadike, A. D.; Borthwick, A. D. J. Chem. Soc., Chem. Commun. 1990, 380.
  7. Gumina, G.; Chong, Y.; Choi, Y.; Chu, C. K. Org. Lett. 2000, 2, 1229. https://doi.org/10.1021/ol005665k
  8. Hong, J. H.; Lee, K.; Choi, Y.; Chu, C. K. Tetrahedron Lett. 1998, 39, 3443. https://doi.org/10.1016/S0040-4039(98)00567-X
  9. Jeong, B. S.; Lee, J. W.; Son, H. J.; Kim, B. Y.; Ahn, S. K. Terahedron; Asymmetry 2005, 16, 3795.
  10. Holy, A. Curr. Pharm. Des. 2003, 9, 2567. https://doi.org/10.2174/1381612033453668
  11. De Clercq, E.; Holy, A. Nat. Rev. Drug Discovery 2005, 4, 928. https://doi.org/10.1038/nrd1877
  12. Vina, D.; Wu, T.; Renders, M.; Laflamme, G.; Herdewijn, P. Tetrahedron 2007, 63, 2634.
  13. Schöning, K.; Scholz, P.; Guntha, S.; Wu, X.; Krishnamurthy, R.; Eschenmoser, A. Science 2000, 5495, 1347.
  14. Holy, A. Tetrahedron Lett. 1967, 10, 881.
  15. Yengoyan, L.; Rammler, D. H. Biochemistry 1966, 5, 3629. https://doi.org/10.1021/bi00875a036
  16. Jones, G. H.; Moffat, J. G. J. Am. Chem. Soc. 1968, 90, 5338. https://doi.org/10.1021/ja01021a087
  17. De Clercq, E. Biochem. Pharmacol. 2011, 82, 99. https://doi.org/10.1016/j.bcp.2011.03.027
  18. Balzarini, J.; Hao, Z.; Herdewijn. P.; Johns, D. G.; De Clercq, E. Proc. Natl. Acad. Sci. USA 1991, 88, 1499. https://doi.org/10.1073/pnas.88.4.1499
  19. Magee, W. C.; Aldern, K. A.; Hostetler, K. Y.; Evans, D. H. Antimicrob. Agents Chemother. 2008, 52, 586. https://doi.org/10.1128/AAC.01172-07
  20. Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. J. Am. Chem. Soc. 2005, 127, 5056. https://doi.org/10.1021/ja043045z
  21. Koh, Y. H.; Shim, J. H.; Wu, J. Z.; Zhong, W.; Hong, Z.; Girardet, J. L. J. Med. Chem. 2005, 48, 2867. https://doi.org/10.1021/jm049029u
  22. Kim, C. U.; Luh, B. Y.; Misco, P. F.; Bronson, J. J.; Hitchcock, M. J.; Ghazzouli, I.; Martin, J. C. J. Med. Chem. 1990, 33, 1207. https://doi.org/10.1021/jm00166a019
  23. Patrick, T. B.; Lanahan, M. V.; Yang, C.; Walker, J. K. J. Org. Chem. 1994, 59, 1210. https://doi.org/10.1021/jo00084a048
  24. Morikawa, T.; Sasaki, H.; Mori. K.; Shiro, M.; Taguchi, T. Chem. Pharm. Bull. 1992, 40, 3189. https://doi.org/10.1248/cpb.40.3189
  25. Hong, J. H.; Lee, K.; Choi, Y.; Chu, C. K. Tetrahedron Lett. 1998, 39, 3443. https://doi.org/10.1016/S0040-4039(98)00567-X
  26. Gumina, G.; Chong, Y.; Choi, Y.; Chu, C. K. Org. Lett. 2000, 2, 1229. https://doi.org/10.1021/ol005665k
  27. Kim, H. O.; Schinazi, R. F.; Shanmuganathan, K.; Jeong, L. S.; Beach, J. W.; Nampalli, S.; Cannon, D. L.; Chu, C. K. J. Med. Chem. 1993, 36, 519. https://doi.org/10.1021/jm00057a001
  28. Hong, J. H.; Ko, O. H. Bull. Kor. Chem. Soc. 2003, 24, 1284. https://doi.org/10.5012/bkcs.2003.24.9.1284
  29. Ko, O. H.; Hong, J. H. Tetrahedron Lett. 2002, 43, 6399. https://doi.org/10.1016/S0040-4039(02)01384-9
  30. Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roy, V.; Berteina-Raboin, S.; Nolan, S. P.; Deville-Bonne, D.; Andrei, G.; Snoeck, R.; Garin, D.; Crance, J.-M.; Agrofoglio, L. A. Tetrahedron 2008, 64, 3517. https://doi.org/10.1016/j.tet.2008.01.140
  31. Montagu, A.; Pradere, U.; Roy, V.; Nolan, S. P.; Agrofoglio, L. A. Tetrahedron 2011, 67, 5317.
  32. Huang, Q.; Herdewijn, P. J. Org. Chem. 2011, 76, 3742. https://doi.org/10.1021/jo200033p
  33. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. https://doi.org/10.1021/ol990909q
  34. Hockova, D.; Holy, A.; Masojidkova, M.; Keough, D. T.; De Jersey, J.; Guddat, L. W. Bioorg. Med. Chem. 2009, 17, 6218. https://doi.org/10.1016/j.bmc.2009.07.044
  35. Bronson, J. J.; Ghazzouli, I.; Hitchocock, M. J. M.; Webb, R. R.; Martin, J. C. J. Med. Chem. 1989, 32, 1457. https://doi.org/10.1021/jm00127a010
  36. Robins, M. J.; Uznanski, B. Can. J. Chem. 1981, 59, 2608. https://doi.org/10.1139/v81-375
  37. Vorbruggen, H.; Ruh-Pohlenz, C. Handbook of Nucleoside Synthesis; John Wiley & Sons, Inc.: New York, 2001.
  38. Montgomery, J.; Hewson, K. J. Med. Chem. 1969, 12, 498. https://doi.org/10.1021/jm00303a605
  39. Tong, G. L.; Ryan, K. J.; Lee, W. W.; Acton, E. M.; Goodman, L. J. Org. Chem. 1967, 32, 859. https://doi.org/10.1021/jo01278a095
  40. Holy, A.; Votruba, I.; Merta, A.; Cerny, J.; Vesely, J.; Vlach, J.; Sediva, K.; Rosenberg, I.; Otmar, M.; Hrebabecky, H.; Travniekb, M.; Vonkac, V.; Snoeck, R.; De Clercq, E. Antiviral Res. 1990, 13, 295. https://doi.org/10.1016/0166-3542(90)90014-X
  41. Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. J. Virol. Methods 1988, 20, 309. https://doi.org/10.1016/0166-0934(88)90134-6

Cited by

  1. Synthesis and Anti-Retroviral Activity of Novel 5′-Deoxy-5′,5′-difluoro-threosyl Nucleoside Phosphonic Acid Analogs vol.36, pp.8, 2015, https://doi.org/10.1002/bkcs.10390
  2. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium-Catalyzed Allylic Fluoroalkylation vol.130, pp.40, 2018, https://doi.org/10.1002/ange.201807474
  3. Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridium-Catalyzed Allylic Fluoroalkylation vol.57, pp.40, 2018, https://doi.org/10.1002/anie.201807474
  4. Synthesis and antiretroviral activity of novel 4'-fluoro-5'-deoxyphosphonic acid carbocyclic nucleoside analogs. vol.33, pp.10, 2012, https://doi.org/10.1080/15257770.2014.920506
  5. Synthesis of Novel 2′,3′-Difluorinated 5′-Deoxythreosyl Phosphonic Acid Nucleosides as Antiviral Agents vol.34, pp.2, 2012, https://doi.org/10.1080/15257770.2014.975243
  6. Copper-Catalyzed Defluorinative Borylation and Silylation of gem-Difluoroallyl Groups vol.22, pp.17, 2012, https://doi.org/10.1021/acs.orglett.0c02321