DOI QR코드

DOI QR Code

Rate and Product Studies on the Solvolyses of Allyl Chloroformate

  • Koh, Han Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk Jin (Department of Science Education, Jeonju National University of Education)
  • Received : 2012.09.02
  • Accepted : 2012.09.25
  • Published : 2012.12.20

Abstract

The solvolysis rate constants of allyl chloroformate ($CH_2=CHCH_2OCOCl$, 3) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and $Y_{Cl}$ solvent ionizing scale, with the sensitivity values of $0.93{\pm}0.05$ and $0.41{\pm}0.02$ for l and m, respectively. These l and m values can be considered to support a $S_N2$ reaction pathway. The activation enthalpies (${\Delta}H^{\neq}$) were 12.5 to 13.4 $kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) were -34.4 to -37.3 $cal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is also consistent with the proposed bimolecular reaction mechanism. The solvent kinetic isotope effect (SKIE, $k_{MeOH}/k_{MeOD}$) of 2.16 was also in accord with the $S_N2$ mechanism. The values of product selectivity (S) for the solvolyses of 3 in alcohol/water mixtures was 1.3 to 3.9, which is also consistent with the proposed bimolecular reaction mechanism.

Keywords

References

  1. Baer, S.; Brinkman, E. A.; Brauman, J. I. J. Am. Chem. Soc. 1991, 113, 805. https://doi.org/10.1021/ja00003a012
  2. Williams, A. Chem. Soc. Rev. 1994, 23, 93. https://doi.org/10.1039/cs9942300093
  3. Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1987, 109, 3856. https://doi.org/10.1021/ja00247a007
  4. Kevill, D. N. The Chemistry of Acyl Halide, Ed.; Patai, S. Interscience, New York, 1973, Ch. 12.
  5. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  6. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem. 1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  7. Chrystiuk, E.; Williams, A. J. Am. Chem. Soc. 1987, 109, 3040. https://doi.org/10.1021/ja00244a028
  8. Castro, E. A.; Salas, M.; Santos, J. G. J. Org. Chem. 1994, 59, 30. https://doi.org/10.1021/jo00080a008
  9. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425. https://doi.org/10.1021/jo0207426
  10. Oh, H. K.; Koh, H. J.; Lee, I. J. Chem. Soc., Perkin Trans 2 1991, 1981.
  11. Lee, I.; Kim, C. K.; Lee, B.-S. J. Phys. Org. Chem. 1992, 5, 812. https://doi.org/10.1002/poc.610051206
  12. Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; DeFrees, D. J.; Seeger, R.; Whiteside, R. A.; Fox, D. J.; Fluder, E. M.; Pople, J. A. GAUSSIAN 86; Carnegoe-Mellon Quantum Chemistry Publishing Unit: Pittsburgh, PA, 1984.
  13. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  14. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  15. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  16. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  17. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 296.
  18. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  19. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  20. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M. ed.; JAI Press: Greenwich, CT, 1996, Vol. 1, p 81.
  21. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759. https://doi.org/10.1002/poc.425
  22. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  23. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  24. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans 2 1997, 1721.
  25. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans 2 1995, 2263.
  26. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 3799. https://doi.org/10.5012/bkcs.2011.32.10.3799
  27. Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2010, 4, 835.
  28. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  29. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans 2 1989, 1385.
  30. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Error; Wiley: New York, 1940; p 178.
  31. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399. https://doi.org/10.1021/jo020467n
  32. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  33. Kyong, J. B.; Kim, Y. G..; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  34. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 186. https://doi.org/10.3390/i7070186
  35. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  36. Kyong, J. B.; Won, H. S.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  37. Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2009, 30, 383. https://doi.org/10.5012/bkcs.2009.30.2.383
  38. Koh, H. J.; Kang, S. J.; Kevill, D. N. Phosphorus, Sulfur, Silicon and the Related Elements, 2010, 185, 1404. https://doi.org/10.1080/10426500903061525
  39. Kevill, D. N.; D'Souza, M.-J. Collect. Czech. Chem. Commun. 1999, 64, 1790. https://doi.org/10.1135/cccc19991790
  40. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040. https://doi.org/10.1039/b402093f
  41. Kevill, D. N.; Ryu, Z. H.; Neidermeyer, M. A.; Koyoshi, F.; D'Souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  42. Exner, O. J. Chem. Soc., Perkin Trans 2 1993, 973.
  43. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Perkin Trans 2 1985, 983.
  44. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Chem. Commun. 1988, 41.
  45. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724. https://doi.org/10.1021/jo00239a004
  46. Bentley, T. W.; Jones, R. O. J. Chem. Soc., Perkin Trans 2 1993, 2351.
  47. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc., Perkin Trans 2 1994, 753.
  48. Dostrovsky, I.; Halmann, M. J. Chem. Soc. 1953, 502. https://doi.org/10.1039/jr9530000502

Cited by

  1. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters vol.14, pp.4, 2013, https://doi.org/10.3390/ijms14047286
  2. Correlation of Rates of Solvolysis of Diphenylacetyl Chloride Using Extended Grunwald-Winstein Equation vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10465
  3. Studies of Solvolyses of Di-n-butyl Phosphorochloridate by Extended Grunwald-Winstein Equation vol.59, pp.5, 2015, https://doi.org/10.5012/jkcs.2015.59.5.373
  4. Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.51
  5. Rate and Product Studies of 5-Dimethylamino-Naphthalene-1-Sulfonyl Chloride under Solvolytic Conditions vol.35, pp.8, 2012, https://doi.org/10.5012/bkcs.2014.35.8.2285