DOI QR코드

DOI QR Code

A Convenient, Eco-friendly, and Efficient Method for Synthesis of 3,3'-Arylmethylene-bis-4-hydroxycoumarins "On-water"

  • Gupta, Arpita Das (Department of Chemistry, Jadavpur University) ;
  • Samanta, Swati (Department of Chemistry, Jadavpur University) ;
  • Mondal, Rina (Department of Chemistry, Jadavpur University) ;
  • Mallik, Asok K. (Department of Chemistry, Jadavpur University)
  • Received : 2012.06.04
  • Accepted : 2012.09.18
  • Published : 2012.12.20

Abstract

Keywords

References

  1. Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins; Wiley: Chichester, 1982.
  2. Estevez-Braun, A.; Ganzalez, A. G. Nat. Pdt. Rep. 1997, 14, 465. https://doi.org/10.1039/np9971400465
  3. Brimble, M. A.; Gibson, J. S.; Sperry, J. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.; Elsevier, Amsterdam, 2008; Vol. 7, p 557.
  4. Okenne, R.; Thomes, R. D. Coumarins: Biology Application and Modes of Action; Wiley & Sons: Chichester, 1997.
  5. Zahradink, M. The Production and Application of Fluorescent Brightening Agents; Wiley & Sons, 1992.
  6. Overmann, R. S.; Stahmann, M. A.; Heubner, C. F.; Sullivan, W. R.; Spero, L.; Doherty, D. G.; Ikawa, M.; Graf, L.; Rosenman, S.; Lonk, K. P. J. Biol. Chem. 1944, 153, 5.
  7. Chohan, Z. H.; Shaikh, A. U.; Rauf, A.; Supuran, C. T. J. Enzym. Inhib. Med. Chem. 2006, 21, 741. https://doi.org/10.1080/14756360600810340
  8. Jung, J.; Lee, J. H.; Oh, S.; Lee, J. G. Bioorg. Med. Chem. Lett. 2004, 14, 5527 https://doi.org/10.1016/j.bmcl.2004.09.009
  9. Chen, Y. L.; Wang, T. C.; Tzeng, C. C.; Chang, N. C. Helv. Chim. Acta. 1999, 82, 191 https://doi.org/10.1002/(SICI)1522-2675(19990210)82:2<191::AID-HLCA191>3.0.CO;2-P
  10. Zhao, H.; Neamati, N.; Hong, H.; Mazumder, A.; Wang, S.; Sunder, S.; Milne, G. W. A.; Pommier, Y.; Burke, T. R. J. Med. Chem. 1997, 40, 242. https://doi.org/10.1021/jm960450v
  11. Kancheva, V. D.; Boranova, P. V.; Nechev, J. T.; Monolov, I. Biochimie 2010, 92, 1138. https://doi.org/10.1016/j.biochi.2010.02.033
  12. Bhat, A. N.; Jain, B. D. Talanta 1960, 5, 271. https://doi.org/10.1016/0039-9140(60)80185-3
  13. Appendino, G.; Cravotto, G.; Tagliapietra, S.; Ferraro, S.; Nano, G. M.; Palmisano, G. Helv. Chim. Acta 1991, 74, 1451. https://doi.org/10.1002/hlca.19910740708
  14. Manolov, I.; Moessmer, C. M.; Danchev, N. Eur. J. Med. Chem. 2006, 41, 882. https://doi.org/10.1016/j.ejmech.2006.03.007
  15. Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Zia-u- Allah; Choudhary, M. I.; Rahman, A. U.; Perveen, S. Bioorg. Med. Chem. 2004, 12, 1963. https://doi.org/10.1016/j.bmc.2004.01.010
  16. Lehmann, J. The Lancet 1943, 241, 611. https://doi.org/10.1016/S0140-6736(00)43039-4
  17. Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R. K.; Dey, S.; Singh,T. P. J. Mol. Cat. A: Chem. 2007, 268, 76. https://doi.org/10.1016/j.molcata.2006.11.054
  18. Khurana, J. M.; Kumar, S. Tetrahedron Lett. 2009, 50, 4125. https://doi.org/10.1016/j.tetlet.2009.04.125
  19. Mehrabi, H.; Abusaidi, H. J. Iran. Chem. Soc. 2010, 7, 890. https://doi.org/10.1007/BF03246084
  20. Qadir, S.; Dar, A. A.; Khan, K. Z. Synth. Commun. 2008, 38, 3490. https://doi.org/10.1080/00397910802162942
  21. Zhou, J.; Gong, G.; An, L.; Sun, X.; Zhu, F. Chin. J. Org. Chem. 2009, 29, 1988.
  22. Zavrsnik, D.; Muratoviæ, S.; Makuc, D.; Plavec, J.; Cetina, M.; Nagl, A.; Clercq, E. D.; Balzarini, J.; Mintas, M. Molecules 2011, 16, 6023. https://doi.org/10.3390/molecules16076023
  23. Davoodnia, A. Bull. Korean Chem. Soc. 2011, 32, 4286. https://doi.org/10.5012/bkcs.2011.32.12.4286
  24. Tabatabaeian, K.; Heidari, H.; Khorshidi, A.; Mamaghani, M.; Mahmoodi, N. J. Serb. Chem. Soc. 2012, 77, 407. https://doi.org/10.2298/JSC110427189T
  25. Cozzi, P. G.; Zoli, L. Green Chem. 2007, 9, 1292. https://doi.org/10.1039/b711523g
  26. Cozzi, P. G.; Zoli, L. Angew. Chem. Int. Ed. 2008, 47, 4162. https://doi.org/10.1002/anie.200800622
  27. Mashkouri, S.; Naimi-Jamal, M. R. Molecules 2009, 14, 474. https://doi.org/10.3390/molecules14010474
  28. Galleti, P.; Pori, M.; Giacomini, D. Eur. J. Org. Chem. 2011, 2011, 3896.
  29. Mallik, A. K.; Pal, R.; Guha, C.; Mallik, H. Green Chem. Lett. Rev. 2012, 5, 321. https://doi.org/10.1080/17518253.2011.630027
  30. Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; John Wiley & Sons: New York, 1997; p 1.
  31. Yu, J.-J.; Wang, L.-M.; Liu, J.-Q.; Guo, F.-L.; Liu, Y.; Jiao, N. Green Chem. 2010, 12, 216. https://doi.org/10.1039/b913816a

Cited by

  1. An expedient “on-water” synthesis of quinoxalines vol.145, pp.10, 2014, https://doi.org/10.1007/s00706-014-1242-5
  2. Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis(coumarin)s and bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s vol.20, pp.3, 2016, https://doi.org/10.1007/s11030-016-9673-z
  3. BiVO4-NPs: an efficient nano-catalyst for the synthesis of biscoumarins, bis(indolyl)methanes and 3,4-dihydropyrimidin-2(1H)-ones (thiones) derivatives vol.14, pp.1, 2017, https://doi.org/10.1007/s13738-016-0959-y
  4. Simple protic ionic liquid [Et3NH][HSO4] as a proficient catalyst for facile synthesis of biscoumarins vol.43, pp.10, 2017, https://doi.org/10.1007/s11164-017-2932-5
  5. Efficient synthesis of bis(indolyl)methanes, bispyrazoles and biscoumarins using 4-sulfophthalic acid vol.43, pp.3, 2017, https://doi.org/10.1007/s11164-016-2720-7
  6. Introduction of W-doped ZnO nanocomposite as a new and efficient nanocatalyst for the synthesis of biscoumarins in water vol.5, pp.1, 2015, https://doi.org/10.1007/s40097-014-0143-9
  7. Recent Advances in the Synthesis of Biscoumarin Derivatives vol.65, pp.4, 2018, https://doi.org/10.1002/jccs.201700363
  8. A nano-composite of magnetite and hot-water-soluble starch: a cooperation resulting in an amplified catalytic activity on water vol.42, pp.15, 2018, https://doi.org/10.1039/C8NJ00718G
  9. A highly promising approach for the one-pot synthesis of biscoumarins using HY zeolite as recyclable and green catalyst pp.1573-4854, 2018, https://doi.org/10.1007/s10934-018-0625-0
  10. Introduction of titania sulfonic acid (TiO2-SO3H) as a new, efficient, and reusable heterogenous solid acid catalyst for the synthesis of biscoumarins vol.189, pp.9, 2012, https://doi.org/10.1080/10426507.2013.858254
  11. Two efficient and green methods for synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) without use of any catalyst or solvent vol.7, pp.4, 2012, https://doi.org/10.1080/17518253.2014.970236
  12. Recent developments on ultrasound assisted catalyst-free organic synthesis vol.35, pp.1, 2017, https://doi.org/10.1016/j.ultsonch.2016.09.023
  13. Recent Synthetic Approaches to 3,3′-(Methylene)bis(Coumarins) vol.51, pp.3, 2019, https://doi.org/10.1080/00304948.2019.1599788
  14. Recent Synthetic Approaches to 3,3′-(Methylene)bis(Coumarins) vol.51, pp.3, 2019, https://doi.org/10.1080/00304948.2019.1599788
  15. Synthesis, Characterisation and Antimicrobial Evaluation of Chalcone Coupled Biscoumarin Copolyesters vol.27, pp.6, 2012, https://doi.org/10.1007/s13233-019-7082-8
  16. Synthesis, photophysical properties, chemo-sensing ability and computational studies of biscoumarin derivatives vol.1248, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2021.131415