DOI QR코드

DOI QR Code

Biotransformation of Flavone by CYP105P2 from Streptomyces peucetius

  • Niraula, Narayan Prasad (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Bhattarai, Saurabh (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Lee, Na-Rae (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Received : 2012.01.26
  • Accepted : 2012.04.10
  • Published : 2012.08.28

Abstract

Biocatalytic transfer of oxygen in isolated cytochrome P450 or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. Cytochrome P450 CYP105P2 was isolated from Streptomyces peucetius that showed a high degree of amino acid identity with hydroxylases. Previously performed homology modeling, and subsequent docking of the model with flavone, displayed a reasonable docked structure. Therefore, in this study, in a pursuit to hydroxylate the flavone ring, CYP105P2 was co-expressed in a two-vector system with putidaredoxin reductase (camA) and putidaredoxin (camB) from Pseudomonas putida for efficient electron transport. HPLC analysis of the isolated product, together with LC-MS analysis, showed a monohydroxylated flavone, which was further established by subsequent ESI/MS-MS. A successful 10.35% yield was achieved with the whole-cell bioconversion reaction in Escherichia coli. We verified that CYP105P2 is a potential bacterial hydroxylase.

Keywords

References

  1. Boue, M. S., H. C. Carter-Wientjes, Y. B. Shih, and E. T. Cleveland. 2003. Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991: 61-68. https://doi.org/10.1016/S0021-9673(03)00209-7
  2. Canivenc-Lavier, M. C., M. Bentejac, M. L. Miller, J. Leclerc, M. H. Siess, N. Latruffe, and M. Suschetet. 1996. Differential effects of nonhydroxylated flavonoids as inducers of cytochrome P450 1A and 2B isozymes in rat liver. Toxicol. Appl. Pharmacol. 136: 348-353. https://doi.org/10.1006/taap.1996.0042
  3. Chen, L. J., D. E. Games, J. Jones, and H. Kidwell. 2003. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. Relat. Technol. 26: 1623-1636. https://doi.org/10.1081/JLC-120021271
  4. Ciolino, H. P., T. T. Wang, and G. C. Yeh. 1998. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res. 58: 2754-2760.
  5. Das, S. and P. N. R. John. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508. https://doi.org/10.1021/np0504659
  6. Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.
  7. Green, A. J., A. W. Munro, M. R. Cheesman, G. A. Reid, C. von Wachenfeldt, and S. K. Chapman. 2003. Expression, purification and characterization of a Bacillus subtilis ferredoxin: A potential electron transfer donor to cytochrome P450. Biol. J. Inorg. Biochem. 3: 92-99.
  8. Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
  9. Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems - biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
  10. Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids - potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139: 1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
  11. Hosny, M., K. Dhar, and J. P. Rosazza. 2001. Hydroxylations and methylations of quercetin, fisetin and catechin by Streptomyces griseus. J. Nat. Prod. 64: 462-465. https://doi.org/10.1021/np000457m
  12. Hosny, M. and J. P. N. Rosazza. 1999. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62: 1609-1612. https://doi.org/10.1021/np9901783
  13. Hur, H. and F. Rafii. 2000. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 192: 21-25. https://doi.org/10.1111/j.1574-6968.2000.tb09353.x
  14. Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478. https://doi.org/10.1021/np50072a011
  15. Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of flavone and isoflavone. J. Xenobiot. 20: 363-373. https://doi.org/10.3109/00498259009046853
  16. Kanth, B. K., K. Liou, and J. K. Sohng. 2010. Homology modeling; binding site identification and docking in flavone hydroxylase CYP105P2 in Streptomyces peucetius ATCC 27952. Comp. Biol. Chem. 34: 226-231. https://doi.org/10.1016/j.compbiolchem.2010.08.002
  17. Kasai, N., S. Ikushiro, S. Hirosue, A. Arisawa, H. Ichinose, Y. Uchida, et al. 2010. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J. Biochem. 147: 117-125. https://doi.org/10.1093/jb/mvp155
  18. Ma, Y. L., Q. M. Li, H. Van den Heuvel, and M. Claeys. 1997. Characterization of flavone and flavonol aglycones by collisionreduced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11: 1357-1364. https://doi.org/10.1002/(SICI)1097-0231(199708)11:12<1357::AID-RCM983>3.0.CO;2-9
  19. Modi, S., M. J. Sutcliffe, W. U. Primrose, L. Y. Lian, and G. C. Roberts. 1996. The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat. Struct. Biol. 3: 414-417. https://doi.org/10.1038/nsb0596-414
  20. Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Fevereisen, D. J. Waxman, et al. 1996. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42. https://doi.org/10.1097/00008571-199602000-00002
  21. Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
  22. Park, Y., L. Sunhee, W. Yoonkyung, and L. Yoongho. 2009. Relationships between structure and anti-oxidative effects of hydroxyflavones. Bull. Korean Chem. Soc. 30: 1397-1400. https://doi.org/10.5012/bkcs.2009.30.6.1397
  23. Peterson, J. A., M. C. Lorence, and B. Amarneh. 1990. Putidaredoxin reductase and putidaredoxin: Cloning, sequence determination, and heterologous expression of the proteins. J. Biol. Chem. 265: 6066-6073.
  24. Roh, C., K. Y. Choi, B. P. Pandey, and B. G. Kim. 2009. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. J. Mol. Catal. B Enzym. 59: 248-253. https://doi.org/10.1016/j.molcatb.2008.07.005
  25. Rujisenaars, H. J., E. M. Sperling, P. H. Wiegerinck, F. T. Brands, J. Wery, and J. A. de Bont. 2007. Testosterone 15Bhydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131: 205-208. https://doi.org/10.1016/j.jbiotec.2007.06.007
  26. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  27. Sariaslani, F. S., L. R. McGee, M. K. Trower, and F. G. Kitson. 1990. Lack of region- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P- 450soy. Biochem. Biophys. Res. Commun. 170: 456-461. https://doi.org/10.1016/0006-291X(90)92113-E
  28. Seitz, C., S. Ameres, and G. Forkmann. 2007. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett. 581: 3429-3434. https://doi.org/10.1016/j.febslet.2007.06.045
  29. Shinodo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A. Saito, et al. 2001. Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem. 65: 2472-2481. https://doi.org/10.1271/bbb.65.2472
  30. Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562. https://doi.org/10.1007/s00253-008-1455-9
  31. Sthapit, B., T.-J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
  32. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  33. Ueno, M., M. Yamashita, M. Hashimoto, M. Hino, and A. Fujie. 2005. Oxidative activities of heterologously expressed CYP107B1 and CYP105D1 in whole-cell biotransformation using Streptomyces lividans TK24. J. Biosci. Bioeng. 100: 567-572. https://doi.org/10.1263/jbb.100.567
  34. Uno, T., O. Sota, M. Satoko, I. Atsushi, U. Yuichi, N. Masahiko, et al. 2008. Bioconversion of small molecules by cytochrome P450 species expressed in Escherichia coli. Biotechnol. Appl. Biochem. 50: 165-171. https://doi.org/10.1042/BA20070173

Cited by

  1. CYP105—diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces vol.117, pp.6, 2014, https://doi.org/10.1111/jam.12662
  2. Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding vol.17, pp.6, 2012, https://doi.org/10.3390/ijms17060813
  3. Biosynthesis of a novel fisetin glycoside from engineered Escherichia coli vol.43, pp.None, 2012, https://doi.org/10.1016/j.jiec.2016.07.054
  4. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function vol.34, pp.9, 2012, https://doi.org/10.1039/c7np00034k
  5. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
  6. Tracking Down a New Steroid‐Hydroxylating Promiscuous Cytochrome P450: CYP154C8 from Streptomyces sp. W2233‐SM vol.19, pp.10, 2012, https://doi.org/10.1002/cbic.201800018
  7. Unusual Flavones from Primula macrocalyx as Inhibitors of OAT1 and OAT3 and as Antifungal Agents against Candida rugosa vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-45728-5
  8. Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents vol.27, pp.2, 2019, https://doi.org/10.4062/biomolther.2018.183