DOI QR코드

DOI QR Code

Performance and Spatial Succession of a Full-Scale Anaerobic Plant Treating High-Concentration Cassava Bioethanol Wastewater

  • Gao, Ruifang (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Yuan, Xufeng (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Li, Jiajia (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Wang, Xiaofen (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Cheng, Xu (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Zhu, Wanbin (College of Agronomy and Biotechnology, China Agricultural University) ;
  • Cui, Zongjun (College of Agronomy and Biotechnology, China Agricultural University)
  • Received : 2012.02.08
  • Accepted : 2012.03.25
  • Published : 2012.08.28

Abstract

A novel two-phase anaerobic treatment technology was developed to treat high-concentration organic cassava bioethanol wastewater. The start-up process and contribution of organics (COD, total nitrogen, and $NH_4^+$-N) removal in spatial succession of the whole process and spatial microbial diversity changing when sampling were analyzed. The results of the start-up phase showed that the organic loading rate could reach up to $10kg\;COD/m^3d$, with the COD removal rate remaining over 90% after 25 days. The sample results indicated that the contribution of COD removal in the pre-anaerobic and anaerobic phases was 40% and 60%, respectively, with the highest efficiency of 98.5%; TN and $NH_4^+$-N had decreased to 0.05 g/l and 0.90 g/l, respectively, and the mineralization rate of total nitrogen was 94.8%, 76.56% of which was attributed to the anaerobic part. The microbial diversity changed remarkably among different sample points depending on the physiological characteristics of identified strains. Moraxellaceae, Planococcaceae, and Prevotellaceae were dominant in the pre-anaerobic phase and Bacteroidetes, Campylobacterales, Acinetobacter, Lactobacillus, Clostridium, and Bacillus for the anaerobic phase. Methanosarcinaceae and Methanosaeta were the two main phylotypes in the anaerobic reactor.

Keywords

References

  1. Calli, B., B. Mertoglu, K. Roest, and B. Inanc. 2006. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Bioresour. Technol. 97: 641-647. https://doi.org/10.1016/j.biortech.2005.03.021
  2. Colin, X., J. L. Farinet, O. Rojas, and D. Alazard. 2007. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support. Bioresour. Technol. 98: 1602-1607. https://doi.org/10.1016/j.biortech.2006.06.020
  3. Engelmann, U. and N. Weiss. 1985. Megasphaera cerevisiae sp. nov.: A new Gram-negative obligately anaerobic coccus isolated from spoiled beer. Syst. Appl. Microbiol. 6: 287-290. https://doi.org/10.1016/S0723-2020(85)80033-3
  4. Hartman, R. B., D. G. Smith, E. R. Bennett, and K. D. Linstedt. 1979. Sludge stabilization through aerobic digestion. J. Water Pollut. Control Fed. 2353-2365.
  5. Hori, T., S. Haruta, Y. Ueno, M. Ishii, and Y. Igarashi. 2006. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl. Environ. Microbiol. 72: 1623. https://doi.org/10.1128/AEM.72.2.1623-1630.2006
  6. Lee, J. W., H. W. Lee, S. W. Kim, S. Y. Lee, Y. K. Park, J. H. Han, et al. 2004. Nitrogen removal characteristics analyzed with gas and microbial community in thermophilic aerobic digestion for piggery waste treatment. Water Sci. Technol. 49: 349.
  7. Lu, Y., J. Murase, A. Watanabe, A. Sugimoto, and M. Kimura. 2004. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol. Ecol. 48: 179-186. https://doi.org/10.1016/j.femsec.2004.01.004
  8. Luo, G., L. Xie, and Q. Zhou. 2009. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content. J. Biosci. Bioeng. 107: 641-645. https://doi.org/10.1016/j.jbiosc.2009.01.015
  9. Mohana, S., B. K. Acharya, and D. Madamwar. 2009. Distillery spent wash: Treatment technologies and potential applications. J. Hazard. Mater. 163: 12-25. https://doi.org/10.1016/j.jhazmat.2008.06.079
  10. Moosbrugger, R. E., M. C. Wentzel, G. A. Ekama, and G. Marais. 1993. Treatment of wine distillery waste in UASB systems - feasibility, alkalinity requirements and pH control. Water Sci. Technol. 28: 45-54.
  11. Nishiyama, T., A. Ueki, N. Kaku, K. Watanabe, and K. Ueki. 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol. Microbiol. 59: 1901-1907. https://doi.org/10.1099/ijs.0.008268-0
  12. Oliveira, M. A., E. M. Reis, and J. Nozaki. 2001. Biological treatment of wastewater from the cassava meal industry. Environ. Res. 85: 177-183. https://doi.org/10.1006/enrs.2000.4118
  13. Paixao, M. A., C. R. G. Tavares, R. Bergamasco, A. L. E. Bonifacio, and R. T. Costa. 2000. Anaerobic digestion from residue of industrial cassava industrialization with acidogenic and methanogenic physical separation phases. Appl. Biochem. Biotechnol. 84: 809-819.
  14. Pikuta, E. V., R. B. Hoover, A. K. Bej, D. Marsic, W. B. Whitman, P. E. Krader, and J. Tang. 2006. Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at $-5^{\circ}C$, isolated from penguin guano in Chilean Patagonia. Int. J. Syst. Evol. Microbiol. 56: 2055-2062. https://doi.org/10.1099/ijs.0.64225-0
  15. Saha, N. K., M. Balakrishnan, and V. S. Batra. 2005. Improving industrial water use: Case study for an Indian distillery. Resour. Conserv. Recyc. 43: 163-174. https://doi.org/10.1016/j.resconrec.2004.04.016
  16. Schramm, A., D. De Beer, M. Wagner, and R. Amann. 1998. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480-3485.
  17. Vandamme, P. 2000. Taxonomy of the family campylobacteraceae. Campylobacter 2: 3-26.
  18. Wang, X. F., S. Haruta, P. Wang, M. Ishii, Y. Igarashi, and Z. J. Cui. 2006. Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. FEMS Microbiol. Ecol. 57: 106-115. https://doi.org/10.1111/j.1574-6941.2006.00099.x
  19. Wei, F. S., W. Q. Qi, Z. G. Sun, Y. R. Huang, and Y. W. Shen. 2002. Water and Wastewater Monitoring and Analysis Method. pp. 238-240. China Environmental Science Press, Beijing.
  20. Wirtz, R. A. and R. R. Dague, 1996. Enhancement of granulation and start-up in the anaerobic sequencing batch reactor. Water Environ Res. 68: 883-892. https://doi.org/10.2175/106143096X127893
  21. Zafiri, C., M. Kornaros, and G. Lyberatos. 1999. Kinetic modelling of biological phosphorus removal with a pure culture of Acinetobacter sp. under aerobic, anaerobic and transient operating conditions. Water Res. 33: 2769-2788. https://doi.org/10.1016/S0043-1354(98)00522-3
  22. Zhang, D. D., P. Guo, J. Li, Y. L. Suo, X. F. Wang, and Z. J. Cui. 2011. Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour. Technol. 102: 4703-4711. https://doi.org/10.1016/j.biortech.2011.01.044
  23. Zhang, Q. H., X. Lu, L. Tang, Z. G. Mao, J. H. Zhang, H. J. Zhang, and F. B. Sun. 2010. A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava. J. Hazard. Mater. 179: 635-641. https://doi.org/10.1016/j.jhazmat.2010.03.050
  24. Zhu, H., F. Qu, and L. H. Zhu. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279. https://doi.org/10.1093/nar/21.22.5279

Cited by

  1. Growth and Fermentation Characteristics of Saccharomyces cerevisiae NK28 Isolated from Kiwi Fruit vol.23, pp.9, 2012, https://doi.org/10.4014/jmb.1307.07050
  2. Degradation of Lignocelluloses in Rice Straw by BMC-9, a Composite Microbial System vol.24, pp.5, 2012, https://doi.org/10.4014/jmb.1310.10089
  3. Cassava stems: a new resource to increase food and fuel production vol.7, pp.1, 2012, https://doi.org/10.1111/gcbb.12112
  4. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification vol.6, pp.None, 2015, https://doi.org/10.3389/fmicb.2015.01046
  5. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid vol.26, pp.4, 2012, https://doi.org/10.4014/jmb.1509.09043
  6. Effects of different carriers on biogas production and microbial community structure during anaerobic digestion of cassava ethanol wastewater vol.38, pp.18, 2012, https://doi.org/10.1080/09593330.2016.1255666
  7. Preliminary study on rice straw degradation using microbial inoculant under shake flask condition vol.17, pp.49, 2012, https://doi.org/10.5897/ajb2018.16641
  8. Monitoring Air Quality with Transplanted Bryophytes in a Neotropical Andean City vol.11, pp.8, 2012, https://doi.org/10.3390/life11080821