차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu

  • 투고 : 2012.01.26
  • 심사 : 2012.05.22
  • 발행 : 2012.06.30

초록

본 연구는 차나무(Camellia sinensis L.)와 동백나무(C. japonica L.), 제주지역의 주요 과수작물인 귤나무(Citrus unshiu M.) 잎을 대상으로 엽록소형광과 $CO_2$ 흡수능을 비교 분석하여 탄소흡수원으로서의 가치를 평가하고자 하였다. 차나무의 $CO_2$ 고정율은 같은 과의 동백나무보다 높고 과수작물인 귤나무와 유사하였다. 기공전도도 ($g_s$)는 3종 모두 새벽에는 높고 이후 저녁 시간까지 계속하여 감소하였다. 엽육 내 $CO_2$ 농도 ($C_i$)는 3종 모두 새벽(06:00)에 높고 낮에 감소하였다가 저녁에 다시 증가하는 경향을 보였으며, 잎의 증산율 (E)은 낮 시간에 높아졌다가 저녁에 감소하였다. 차나무에서 광계II의 광화학적 효율(Fv/Fm)은 낮시간에 다소 낮아졌다가 저녁에 다시 증가하는 양상을 보였다. 이러한 낮시간의 Fv/Fm 감소는 광억제의 결과로 보이며 그 감소폭이 동백나무보다 적어 빛이나 고온 등에 내성을 가지고 있음을 알 수 있다. 엽면적당 활성상태의 반응중심의 상대적 밀도를 의미하는 RC/CS는 3종 모두 낮시간에 감소하였다. ABS/RC, TRo/RC, ETo/RC와 DIo/RC는 차나무와 동백나무에서 낮시간에 증가하였으며, 귤나무에서도 낮시간에 증가하였으나 유의성이 없는 것으로 나타났다. 일동화율은 차나무가 $320.1mmol\;m^{-2}d^{-1}$로 가장 높았으며, 귤나무와 동백나무는 각각 $292.5mmol\;m^{-2}d^{-1}$$244.8mmol\;m^{-2}d^{-1}$로 나타났다. 이상의 결과를 토대로 차나무는 광합성율이 높고 낮 시간의 광억제도 낮을 뿐만 아니라, 귤나무보다 수분요구량이 낮고 수분이용효율은 높아 탄소흡수원으로서 유용한 작물수종인 것으로 보인다.

The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.

키워드

참고문헌

  1. 김춘식, 안현철, 조현서, 추갑철. 2007. 묘포지내 토양개량 처리가 토양 이산화탄소 방출에 미치는 영향. 농업기술연구소집. 20:57-63.
  2. 오순자, 고석찬. 2005. 차나무 잎의 캘러스 배양을 통한 카테킨류의 생산성 개선. 한국자원식물학회지. 18:351-358.
  3. 오순자, 고정군, 김응식, 오문유, 고석찬. 2001. 한라산 구상나무 잎의 엽록소형광의 일변화와 계절적 변화. 한국환경생물학회지. 19:43-48.
  4. 임창숙, 최창현, 박용구. 2008. 내한성 유전자를 이용한 차나무의 형질전환. 한국차학회지. 14:105-122.
  5. 임형백. 2007. 환경교육에서의 농업의 다원적 기능. 한국환경교육학회지. 20:36-53.
  6. 제순자, 오주성, 전은희, 이용호, 정영수, 정대수. 2005. 남부지방 수집종 차나무 (Camellia sinensis L.) 유연관계 분석.한국차학회지. 11:79-95.
  7. 조현길, 안태원. 2000. 자연생태계 수목의 생장에 따른 탄소저장 및 흡수량 지표. 한국환경생태학회지. 14:175-182.
  8. Allen LH. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 19:15-34.
  9. Bolhàr-Nordenkampf HR and G Öquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. pp. 193-206. In Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual (Hall DO, JMO Scurlock, HR Bolhàr-Nordenkampf, RC Leegood and SP Long eds.). Chapman and Hall. London.
  10. Bolhàr-Nordenkampf HR, SP Long, NR Baker, G Öquist, U Schreiber and EG Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecol. 3:497-514. https://doi.org/10.2307/2389624
  11. de Souza RP, RV Ribeiro, EC Machado, RF de Oliveira and JAG da Silveira. 2005. Photosynthetic responses of young cashew plants to varying environmental conditions. Pesq. Agropec. Bras. 40:735-744. https://doi.org/10.1590/S0100-204X2005000800002
  12. Ding YF, CY Wang, CM Neo, XX Zhang, LL Shi, YW Zhang, FY Yang and YJ Liu. 2011. Diurnal changes in net photosynthetic rate of Pueraria lobata and its impact factors. For. Stud. China 13:57-63. https://doi.org/10.1007/s11632-011-0107-9
  13. Flagella Z, D Pastore, RG Campanile and N Di Fonzo. 1994. Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum Desf.) cultivars. J. Agric. Sc. Cambridge 122:183-192. https://doi.org/10.1017/S0021859600087359
  14. Hadfield W. 1975. The effect of high temperatures on some aspects of the physiology and cultivation of the tea bush, Camellia sinensis, in Northeast India. pp. 477-495. In Light as an Ecological Factor II (Evans GC, R Bainbridge and O Rackham eds.). The 16th Symposium of the British Ecological Society. Blackwell Scientific Publications. Oxford.
  15. Hwang EJ, YJ Cha, MH Park, JW Lee and SY Lee. 2004. Cytotoxicity and chemosensitizing effect of camellia (Camellia japonica) tea extracts. J. Korean Soc. Food Sci. Nutr. 33: 487-493. https://doi.org/10.3746/jkfn.2004.33.3.487
  16. IPCC. 2007. Climate change 2007: Mitigation of climate change, Contribution working group shos contribution to the fourth assessment report of the lntergovernmental panel on climate change. p. 176. Cambridge University Press. Cambridge New York, USA.
  17. Jifon JL and JP Syvertsen. 2003. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 23:119-127. https://doi.org/10.1093/treephys/23.2.119
  18. Jones HG. 1993. Drought tolerance and water-use efficiency. pp. 193-206. In Water Deficits: Plant Responses from Cell to Community (Smith JAC and H Griffiths eds.). BIOS Scientific Publishers, Oxford.
  19. Laclau P. 2003. Biomass and carbon seqestration of ponderosa pion plantations and native cypress forests in northwest patagonia. For. Ecol. Manag. 180:317-333. https://doi.org/10.1016/S0378-1127(02)00580-7
  20. Liu D, S Zhao, Z Zhang and Y Liu. 2003. Photosynthesis of different cultivars of Camellia japonica L. in greenhouse. Acta Horticulturae Sinica 30:65-68.
  21. Ogren E and JR Evans. 1992. Photoinhibition of photosynthesis in situ in six species of Eucalyptus. Australian J. Plant Physiol. 19:223-232.
  22. Prakash S and LS Lodhiyal. 2009. Biomass and carbon allocation in 8-year-old poplar (Populus deltoides Marsh) plantation in tarai agroforestry systems of central himalaya, India. New York Science J. 2:49-53.
  23. Ramanathan V. 1989. Observed increases in greenhouse gases and predicted climatic changes. pp. 239-247. In the Challenge of Global Warming (Abrahamson DE ed.). Island Press. Washington DC.
  24. Wijeratne MA, A Anandacoomaraswamy, MKSLD Amarathunga, J Ratnasiri, BRSB Basnayake and N Kalra. 2007. Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. J. Natn. Sci. Foundation Sri Lanka 35:119-126. https://doi.org/10.4038/jnsfsr.v35i2.3676
  25. Zhang ZA, F Yang, ZY Chen and KZ Xu. 2006. Relationship between diurnal changes of net photosynthetic rate and environmental factors in leaves of Zizania latifolia. Sci. Agr. Sin. 39:502-509.