납과 아연이 말똥성게(Hemicentrotus pulcherrimus)의 수정 및 배아 발생에 미치는 영향

Effects of Lead and Zinc on the Fertilization and Embryo Development of the Sea Urchin (Hemicentrotus pulcherrimus)

  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 박종수 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 강한승 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Heo, Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Park, Jong-Soo (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Kang, Han Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center)
  • 투고 : 2012.06.05
  • 심사 : 2012.06.11
  • 발행 : 2012.06.30

초록

본 연구는 말똥성게(Hemicentrotus pulcherrimus)의 생식세포 및 pluteus 유생을 이용하여 중금속인 납(lead, Pb)과 아연(zinc, Zn)의 독성을 조사였다. H. pulcherrimus 배우자 및 배아에 미치는 Pb과 Zn의 독성은 각각 31, 63, 125, 250, 500 ppb 및 16, 31, 63, 125, 250 ppb의 농도에서 조사하였다. 0.5 M KCl 용액을 이용하여 방란 및 방정을 유도하였고, 수정률 및 정상 배아발생률의 조사는 수정 후 각각 10분 및 64시간째 관찰하여 시행하였다. Pb 노출 시 수정률은 대조군과 비교하여 유의적인 변화가 없었다. 그러나 정상 배아발생률은 농도가 높을수록 농도의존적으로 유의적인 감소를 보였다. Zn을 노출시켰을 경우 수정률과 정상 배아발생률은 농도가 높을수록 농도의존적인 유의적 감소를 나타냈다. H. pulcherrimus의 정상 배아 발생에 대한 독성치는 각각 Pb (반수 영향농도 ($EC_{50}$) 45.13 ppb, 95% Cl 40.12~50.05 ppb), Zn (반수영향농도 ($EC_{50}$) 19.82 ppb, 95% Cl 18.26~21.31 ppb)로 나타났다. 또한 Pb과 Zn의 무영향농도(NOEC)는 각각 <31.25 ppb 및 <15.63 ppb로 나타났고, 최소영향농도(LOEC)는 31.25 및 15.63 ppb로 나타났다. 본 연구 결과, H. pulcherrimus의 초기 배아발생 과정은 Pb과 Zn 등의 중금속에 높은 민감성을 보인다. 따라서 H. pulcherrimus는 해양생태계 위해 평가를 위한 시험생물로서 사용이 가능하다고 사료된다.

The individual toxicity of lead (Pb) and zinc (Zn) has been investigated by using the sea urchin (Hemicentrotus pulcherrimus) germ cell and pluteus-larvae. The gametotoxic and embryotoxic effects of Pb and Zn on H. pulcherrimus were each investigated at 31, 63, 125, 250, 500 ppb and 16, 31, 63, 125, 250 ppb, respectively. Spawning was induced by 0.5 M KCl solution and the fertilization and normal embryogenesis rates test were performed for 10 min and 64 h after fertilization, respectively. In exposure to Pb, the fertilization rate was not significantly changed compared with control but normal embryogenesis rate was significantly decreased with concentration dependent manner. Fertilization and normal embryogenesis rates showed a significant decreased with concentration dependent manner in exposed to Zn. The normal embryogenesis rates were significantly inhibited in exposed to Pb ($EC_{50}$=45.13 ppb, 95% Cl=40.12~50.05 ppb) and Zn ($EC_{50}$=19.82 ppb, 95% Cl=18.26~21.31 ppb). In exposure to Pb and Zn, the NOEC of normal embryogenesis rate was <31.25 and <15.63 ppb, respectively. The LOEC showed each 31.25 and 15.63 ppb in exposed to Pb and Zn. These results suggest that the early embryo development of H. pulcherrimus is highly sensitive to heavy metals such as Pb and Zn, H. pulcherrimus can be used as a test organism for risk assessment in marine ecosystems.

키워드

참고문헌

  1. Ahlf W, H Hollert, H Neumann-Hensel and M Ricking. 2002. A guidance for the assessment and evaluation of sediment quality: A german approach based on ecotoxicological and chemical measurements. J. Soils Sediments 2:37-42. https://doi.org/10.1007/BF02991249
  2. Chu KW and KL Chow. 2002. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61:53-64. https://doi.org/10.1016/S0166-445X(02)00017-6
  3. Cui L, Y Takagi, M Wasa, K Sando, J Khan and A Okada. 1999. Nitric oxide synthase inhibitor attenuates intestinal damage induced by zinc deficiency in rats. J. Nutr. 129:792-798. https://doi.org/10.1093/jn/129.4.792
  4. Davidson EH, RA Cameron and A Ransick. 1998. Specification of cell fate in the sea urchin embryo: Summary and some proposed mechanisms. Development 125:3269-3290.
  5. Fathallah S, MN Medhioub, A Medhioub and MM Kraiem. 2010. Toxicity of Hg, Cu and Zn on early developmental stages of the European clam (Ruditapes decussatus) with potential application in marine water quality assessment. Environ. Monit. Assess. 171:661-669. https://doi.org/10.1007/s10661-010-1311-0
  6. Fonia O. 1995. Down-regulation of hepatic peripheral-type benzodiazepine receptors caused by acute lead intoxication. Eur. J. Pharmacol. Environ. Toxicol. Pharmarcol. Section 293:335-339. https://doi.org/10.1016/0926-6917(95)90053-5
  7. Gopalakrishnan S, H Thilagam and PV Raja. 2007. Toxicity of heavy metals on embryogenesis and larvae of marine sedentary polychaete Hydroides elegans. Arch. Environ. Contam. Toxicol. 52:171-178. https://doi.org/10.1007/s00244-006-0038-y
  8. Gopalakrishnan S, H Thilagam and PV Raja. 2008. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 71:515-528. https://doi.org/10.1016/j.chemosphere.2007.09.062
  9. Greenwood PJ. 1983. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of temperature, concentration and exposure time on fertilization. Aqua. Toxicol. 4:15-29. https://doi.org/10.1016/0166-445X(83)90058-9
  10. Han M, KM Hyun, M Nili, IY Hwang and JK Kim. 2009. Synergistic effects of ionizing radiation and mercury chloride on cell viability in fish hepatoma cells. Korean J. Environ. Biol. 27:140-145.
  11. Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.
  12. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009a. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
  13. Hwang UK, CW Rhee, KS Kim, HC Kim, KH An and SY Park. 2009b. Toxicity assessment of ocean dumping wastes using fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Toxicol. 24:25-32. https://doi.org/10.1002/tox.20388
  14. Hwang UK, HM Ryu, SG Kim, JS Park and KH An. 2010. Toxicity assessment of ocean dumping wastes using fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 25:11-18.
  15. Hwang UK, HM Ryu, YH Choi, SM Lee and HS Kang. 2011. Effect of cobalt (II) on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 29:251-257.
  16. Hwang UK, JS Park, JN Kwon, S Heo, Y Oshima and HS Kang. 2012. Effect of nickel on embryo development and expression of metallothionein gene in the sea urchin (Hemicentrotus pulcherrimus). J. Fac. Agr., Kyushu Univ. 57:145-149.
  17. King JC, DM Shames and LR Woodhouse. 2000. Zinc homeostasis in humans. J. Nutr. 130:1360-1366. https://doi.org/10.1093/jn/130.5.1360S
  18. Kobayashi N. 1973. Studies on the effects of some agents on fertilized sea urchin eggs, as a part of the bases for marine pollution bioassay I. Publ. Seto. Mar. Biol. Lab. 21:109-114. https://doi.org/10.5134/175805
  19. Kobayashi N. 1977. Preliminary experiments with sea urchin pluteus and metamorphosis in marine pollution bioassay. Publ. Seto. Mar. Biol. Lab. 24:9-21. https://doi.org/10.5134/175965
  20. Kobayashi N. 1981. Comparative toxicity of various chemicals, oil extracts and oil dispersant to Canadian and Japanese sea urchin eggs. Publ. Seto. Mar. Biol. Lab. 27:76-84.
  21. Kobayashi N. 1995. Bioassay data marine pollution using echinoderms. Encyclpedia of Environmental Control Technology 9:539-609.
  22. Lee HH, MJ Cheong, J Huh, SY Song and HO Boo. 2009. Effects of Momordica Charantia L. water extracts on the rat liver and kidney with acute toxicated by lead. Korean J.Microscopy 39:355-363.
  23. Mahaffey KR, SG Capar, BC Gladen and BA Fowler. 1981. Concurrent exposure to lead, cadmium, and arsenic. Effects on toxicity and tissue metal concentrations in the rat. J. Lab. Clin. Med. 98:463-481.
  24. Mahaffey KR. 1983. Biotoxicity of lead: influence of various factors. Fed. Proc. 42:1730-1734.
  25. Martin JM and M Whitfield. 1983. The significance of river input of chemical elements to the ocean. In Trace Metals in Sea Water. New York. pp. 265-296.
  26. Matthiessen P and AE Brafield. 1973. The effect of dissolved zinc on the gills of the stickleback, Gasterosteus aculeatus. J. Fish boil. 5:607-613. https://doi.org/10.1111/j.1095-8649.1973.tb04494.x
  27. Monroy A. 1986. A centennial debt of developmental biology to the sea urchin. Biol. Bull. 171:509-519. https://doi.org/10.2307/1541620
  28. Nava-Ruiz C, M Méndez-Armenta and C Ríos. 2012. Lead neurotoxicity: effects on brain nitric oxide synthase. J. Mol. Histol. Epub ahead of print.
  29. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985a. Ph-induced changes in mitotic and development patterns in sea urchin embryogenesis, I. Exposure of embryos. Teratogenesis Carcinog Mutagen 5: 101-112. https://doi.org/10.1002/tcm.1770050204
  30. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985b. Ph-induced changes in mitotic and development patterns in sea urchin embryogenesis, II. Exposure of sperm. Teratogenesis Carcinog Mutagen 5:113- 121. https://doi.org/10.1002/tcm.1770050205
  31. Park SW, KY Kim, DW Kim, SJ Choi, HS Kim, BS Choi, MK Choi and JD Park. 2006. The relation between blood lead concentration, epidemiologic factors and body iron status. J. Environ. Toxicol. 21:153-16
  32. Phillips DJH and DA Segar. 1986. Use of bioindicators in monitoring conservative contaminants: programme design imparatives. Mar. Pollut. Bull. 17:10. https://doi.org/10.1016/0025-326X(86)90797-6
  33. Prasad AS. 1996. Zinc deficiency in women, infants and children. J. Am. Coll. Nutr. 15:113-120. https://doi.org/10.1080/07315724.1996.10718575
  34. Skidmore JF. 1970. Respiration and osmoregulation in rainbow trout with gills damaged by zinc sulfate. J. Exp. Biol. 52: 481-494.
  35. Smith DR, JD Osterloh, S Niemeyer and AR Flegal. 1992. Stable isotope labeling of lead compartments in rats with ultralow lead concentrations. Environ. Res. 57:190-207. https://doi.org/10.1016/S0013-9351(05)80079-9
  36. Sokol RZ. 1989. Reversibility of the toxic effect of lead on the male reproductive axis. Reproductive Toxicology 3:175- 180. https://doi.org/10.1016/0890-6238(89)90004-X
  37. Viarengo A. 1985. Biochemical effects of trace metals. Mar. Pollut. Bull. 16:153-158. https://doi.org/10.1016/0025-326X(85)90006-2
  38. Wong MH, KC Luk and KY Choi. 1977. The effects of zinc and copper salts on Cyprinus carpio and Ctenopharyngodon idellus. Acta. Anatomica. 99:450-454. https://doi.org/10.1159/000144869
  39. Wu FYH and CW Wu. 1987. Zinc in DNA replication and transcription. Ann. Rev. Nutr. 7:251-271. https://doi.org/10.1146/annurev.nu.07.070187.001343
  40. Wui IS, JB Lee and SH Yoo. 1992. Bioassay on marine sediment pollution by using sea urchin embryo culture in the south-west inland sea of Korean. J. Environ. Biol. 10:92- 99.
  41. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor. J. Env. Hlth. Soc. 24:6-10.