DOI QR코드

DOI QR Code

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli

  • Received : 2012.11.06
  • Accepted : 2012.12.10
  • Published : 2012.12.20

Abstract

The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.

Keywords

References

  1. L. Tutar, Y. Tutar, Curr. Pharm. Biotechnol. 11, 216 (2010). https://doi.org/10.2174/138920110790909632
  2. U. Jakob, W. Muse, M. Eser, J.C.A. Bardwell, Cell 96, 341 (1999). https://doi.org/10.1016/S0092-8674(00)80547-4
  3. J. Winter, M. Ilbert, P.C. Graf, D. Ozcelik, U. Jakob, Cell 135, 691 (2008). https://doi.org/10.1016/j.cell.2008.09.024
  4. M. Ilbert, J. Horst, S. Ahrens, J. Winter, P.C.F. Graf, H. Lilie, U. Jakob, Nat. Struct. Mol. Biol. 14, 556 (2007). https://doi.org/10.1038/nsmb1244
  5. H.-S. Won, L.Y. Low, R.D. Guzman, M. Martinez-Yamout, U. Jakob, H.J. Dyson, J. Mol. Biol. 341, 893 (2004). https://doi.org/10.1016/j.jmb.2004.06.046
  6. C.M. Cremers, D. Reichmann, J. Hausmann, M. Ilbert, U. Jakob, J. Biol. Chem. 285, 11243 (2010). https://doi.org/10.1074/jbc.M109.084350
  7. I. Janda, Y. Devedjiev, U. Derewenda, Z. Dauter, J. Bielnicki, D.R. Cooper, P.C.F. Graf, A. Joachimiak, U. Jakob, Z.S. Derewenda, Structure 12, 1901 (2004). https://doi.org/10.1016/j.str.2004.08.003
  8. J. Vijayalakshmi, M.K. Mukhergee, J. Graumann, U. Jakob, M.A. Saper, Structure 9, 367 (2001). https://doi.org/10.1016/S0969-2126(01)00597-4
  9. S.-J. Kim, D.-G. Jeong, S.-W. Chi, J.-S. Lee, S.-E. Ryu, Nat. Struct. Biol. 8, 459 (2001). https://doi.org/10.1038/87639
  10. L. Jaroszewski, R. Schwarzenbacher, D. McMullan, P. Abdubek, S. Agarwalla, E. Ambing, H. Axelrod, T. Biorac, J.M. Canaves, H.-J. Chiu, et al., Proteins 61, 669 (2005). https://doi.org/10.1002/prot.20542
  11. S-W. Chi, D.G. Jeong, J.R. Woo, H.S. Lee, B.C. Park, B.Y. Kim, R.L. Erikson, S.E. Ryu, S.J. Kim, FEBS Lett. 585, 664 (2011). https://doi.org/10.1016/j.febslet.2011.01.029
  12. D. Reichmann, Y. Xu, C.M. Cremers, M. Ilbert, R. Mittelman, M.C. Fitzgerald, U. Jakob, Cell 148, 947 (2012). https://doi.org/10.1016/j.cell.2012.01.045
  13. M.P. Mayer, Cell 148, 843 (2012). https://doi.org/10.1016/j.cell.2012.02.029
  14. Y.-S. Lee. K.-S. Ryu, S.-J. Kim, H.-S. Ko, D.-W. Sim, Y.-H. Jeon, E.-H. Kim, H.-S. Won, FEBS Lett. 586, 411 (2012). https://doi.org/10.1016/j.febslet.2012.01.011
  15. Y.-S. Lee, K.-S. Ryu, Y. Lee, S. Kim, K.W. Lee, H.-S. Won, J. Kor. Magn. Reson. Soc. 15, 137 (2011). https://doi.org/10.6564/JKMRS.2011.15.2.137
  16. Y.-S. Lee, H.-S. Ko, K.-S. Ryu, Y.-H. Jeon, H.-S. Won, J. Kor. Magn. Reson. Soc. 14, 117 (2010). https://doi.org/10.6564/JKMRS.2010.14.2.117
  17. D.-W. Sim, Y.-S. Lee, J.-H. Kim, M.-D. Seo, B.-J. Lee, H.-S. Won, BMB Rep. 42, 387 (2009). https://doi.org/10.5483/BMBRep.2009.42.6.387

Cited by

  1. Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2) vol.17, pp.1, 2013, https://doi.org/10.6564/JKMRS.2013.17.1.059
  2. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process vol.427, pp.24, 2015, https://doi.org/10.1016/j.jmb.2015.09.029