DOI QR코드

DOI QR Code

Width-Dependent Transition of Magnetic Domain Configuration in Nanostructured CoFe/Pt Multilayered Nanowires

  • Je, Soong-Geun (Department of Physics, Seoul National University) ;
  • Lee, Jae-Chul (Department of Physics, Seoul National University) ;
  • Kim, Kab-Jin (Department of Physics, Seoul National University) ;
  • Min, Byoung-Chul (Center for Spintronics Research, Korea Institute of Science and Technology) ;
  • Shin, Kyung-Ho (Center for Spintronics Research, Korea Institute of Science and Technology) ;
  • Choe, Sug-Bong (Department of Physics, Seoul National University)
  • Received : 2012.08.23
  • Accepted : 2012.10.08
  • Published : 2012.12.31

Abstract

We report on the basis of experiments that magnetic domain structures exhibit a transition between single and dendrite domains with respect to the width of ferromagnetic nanowires. This transition is directly observed in CoFe/Pt multilayered nanowires having a width in the range of 580 nm to 4.2 ${\mu}m$ with a magnetic force microscope. Nanowires wider than 1.5 ${\mu}m$ show typical dendrite domain patterns, whereas the nanowires narrower than 690 nm exhibit single domain patterns. The transition occurs gradually between these widths, which are similar to the typical widths of the dendrite domains. Such a transition affects the strength of the domain wall propagation field; this finding was made by using a time-resolved magneto-optical Kerr effect microscope, and shows that the domain wall dynamics also exhibit a transition in accordance with the domain configuration.

Keywords

References

  1. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008). https://doi.org/10.1126/science.1145799
  2. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005). https://doi.org/10.1126/science.1108813
  3. S.-B. Choe, Appl. Phys. Lett. 92, 062506 (2008). https://doi.org/10.1063/1.2857542
  4. R. D. Kirby, J. X. Shen, R. J. Hardy, and D. J. Sellmyer, Phys. Rev. B 49, 10810 (1994). https://doi.org/10.1103/PhysRevB.49.10810
  5. S.-B. Choe and S.-C. Shin, J. Appl. Phys. 87, 5076 (2000). https://doi.org/10.1063/1.373253
  6. A. Lyberatos, J. Magn. Magn. Mater. 186, 248 (1998). https://doi.org/10.1016/S0304-8853(98)00079-1
  7. A. Lyberatos, J. Phys. D 33, R117 (2000). https://doi.org/10.1088/0022-3727/33/13/201
  8. A. Lyberatos, J. Earl, and R. W. Chantrell, Phys. Rev. B 53, 5493 (1996). https://doi.org/10.1103/PhysRevB.53.5493
  9. S.-B. Choe and S.-C. Shin, Appl. Phys. Lett. 80, 1791 (2002). https://doi.org/10.1063/1.1457527
  10. V. Zablotskii, W. Stefanowicz, and A. Maziewski, J. Appl. Phys. 101, 113904 (2007). https://doi.org/10.1063/1.2738461
  11. M. G. Pini and P. Politi, J. Magn. Magn. Mater. 313, 273 (2007). https://doi.org/10.1016/j.jmmm.2007.01.008
  12. F. Cayssol, D. Ravelosona, C. Chappert, J. Ferre, and J. P. Jamet, Phys. Rev. Lett. 92, 107202 (2004). https://doi.org/10.1103/PhysRevLett.92.107202
  13. K.-J. Kim, J.-C. Lee, S.-M. Ahn, K.-S. Lee, C.-W. Lee, Y.-J. Cho, S. Seo, K.-H. Shin, S.-B. Choe, and H.-W. Lee, Nature 458, 740 (2009). https://doi.org/10.1038/nature07874
  14. M. Mansuripur, J. Appl. Phys. 66, 3731 (1989). https://doi.org/10.1063/1.344058
  15. K.-J. Kim, G.-H. Gim, J.-C. Lee, S.-M. Ahn, K.-S. Lee, Y. J. Cho, C.-W. Lee, S. Seo, K.-H. Shin, and S.-B. Choe, IEEE Trans. Magn. 45, 4056 (2009). https://doi.org/10.1109/TMAG.2009.2024893
  16. D. Ravelosona, D. Lacour, J. A. Katine, B. D. Terris, and C. Chappert, Phys. Rev. Lett. 95, 117203 (2005). https://doi.org/10.1103/PhysRevLett.95.117203
  17. K.-J. Kim and S.-B. Choe, J. Magn. Magn. Mater. 321, 2197 (2009). https://doi.org/10.1016/j.jmmm.2009.01.031