DOI QR코드

DOI QR Code

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T. (Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University) ;
  • Duc, P.A. (Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University) ;
  • Ngoc, N.T. (Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University) ;
  • Hien, N.T. (Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University) ;
  • Duc, N.H. (Department of Nano Magnetic Materials and Devices, Faculty of Engineering Physics and Nanotechnology, University of Engineering and Technology, Vietnam National University)
  • Received : 2012.11.09
  • Accepted : 2012.11.29
  • Published : 2012.12.31

Abstract

Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

Keywords

References

  1. J. Zhai, S. X. Dong, Z. Xing, J. Li, and D. Viehland, Appl. Phys. Lett. 91, 123513 (2007). https://doi.org/10.1063/1.2789391
  2. N. H. Duc and D. T. Huong Giang, J. Alloys Compd. 449, 214 (2008). https://doi.org/10.1016/j.jallcom.2006.01.121
  3. D. T. Huong Giang and N. H. Duc, Sens. Actuator A 149, 229 (2009). https://doi.org/10.1016/j.sna.2008.12.003
  4. L. Ding, J. Teng, X. C. Wang, C. Feng, Y. Jiang, G. H. Yu, S. G. Wang, and R. C. C. Ward, Appl. Phys. Lett. 96, 052515 (2010). https://doi.org/10.1063/1.3304101
  5. D. T. Huong Giang, P. A. Duc, N. T. Ngoc, and N. H. Duc, Sens. Actuator A 179, 78 (2012). https://doi.org/10.1016/j.sna.2012.03.030
  6. Y. Fetisov, A. Bush, K. Kamentsev, A. Ostashchenko, and G. Srinivasan, IEEE Sens. J. 6, 935 (2006). https://doi.org/10.1109/JSEN.2006.877989
  7. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410
  8. J. Blackburn, M. Vopsaroiu, and M. G. Cain, Adv. Appl. Ceram. 109, 169 (2010). https://doi.org/10.1179/174367509X12503626841758
  9. M. Li, D. Berry, J. Das, D. Gray, J. Li, and D. Viehland, J. Am. Ceram. Soc. 94, 3738 (2011). https://doi.org/10.1111/j.1551-2916.2011.04659.x
  10. S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 252904 (2006). https://doi.org/10.1063/1.2420772
  11. J. Gao, D. Gray, Y. Shen, J. Li, and D. Viehland, Appl. Phys. Lett. 99, 153502 (2011). https://doi.org/10.1063/1.3650713
  12. X. X. Cui and S. X. Dong, J. Appl. Phys. 109, 083903 (2011). https://doi.org/10.1063/1.3559301
  13. Z. Wu, Y. Wen, P. Li, J. Yang, and X. Dai, J. Magnetics 16, 157 (2011). https://doi.org/10.4283/JMAG.2011.16.2.157
  14. Z. Fang, S. G. Lu, F. Li, S. Datta, Q. M. Zhang, and M. E. Tahchi, Appl. Phys. Lett. 95, 112903 (2009). https://doi.org/10.1063/1.3231614
  15. Y. Fetisov, Y. K. Fetisov, and K. E. Kamentsev, Phys. Solid State 51, 2308 (2009). https://doi.org/10.1134/S1063783409110195
  16. G. Sreenivasulu, S. K. Mandal, S. Bandekar, V. M. Petrov, and G.. Srinivasan, Phys. Rev. B 84, 144426 (2011). https://doi.org/10.1103/PhysRevB.84.144426
  17. T. T. Nguyen, F. Bouillault, L. Daniel, and X. Mininger, J. Appl. Phys. 109, 084904 (2011). https://doi.org/10.1063/1.3553855
  18. http://www.magpar.net/static/magpar/doc/html/demagcalc.html
  19. R. C. O'Handley, Modern Magnetic Materials, John Wiley & Sons, New York (2000) p. 43.
  20. S. C. Mukhopadhyay and R. Y. M. Huang, Sensors, Springer-Verlag, Berlin-Heidelberg (2000) pp. 23-42.
  21. Ton Tich Ai, Geomagnetism and Magnetic Prospecting, Vietnam National University Publisher (2005).
  22. http://www.ngdc.noaa.gov/seg/geomag/jsp/struts/calcIGRFWMM.

Cited by

  1. Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review vol.17, pp.6, 2017, https://doi.org/10.3390/s17061251
  2. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates vol.108, pp.22, 2016, https://doi.org/10.1063/1.4953156