DOI QR코드

DOI QR Code

Effect of Silica Content on the Dielectric Properties of Epoxy/Crystalline Silica Composites

  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2012.11.14
  • Accepted : 2012.11.18
  • Published : 2012.12.25

Abstract

Crystalline silica was synthesized by annealing amorphous silica at $1,300^{\circ}C$ or $1,400^{\circ}C$ for various times, and the crystallinity was estimated by X-ray diffraction (XRD) analysis. In order to prepare a low dielectric material, epoxy/crystalline silica composites were prepared, and the effect of silica content on the dielectric properties was studied under various functions of frequency and ambient temperature. The dielectric constant decreased with increasing crystalline silica content in the epoxy composites, and it also decreased with increasing frequency. At 120 Hz, the value of 5 wt% silica decreased by 0.25 compared to that of 40 wt% silica, and at 23 kHz, the value of 5 wt% silica decreased by 0.23 compared to that of 40 wt% silica. The value increased with increasing ambient temperature.

Keywords

References

  1. R. A. Sharma, D. D'Melo, S. Bhattacharya, L. Chaudhari and S. Swain, Trans. Dielectr. Electr. Insul. 13, 31 (2012) [DOI:http://dx.doi.org/10.4343/TEEM.2012.13.1.31].
  2. S. Singha, M. Joy Thomas, IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008) [DOI: 10.1109/T-DEI.2008.4446732].
  3. C. H. Kim and T. Oh, Bull. Korean Chem. Soc. 32, 3483 (2011) [DOI: http://dx.doi.org/10.5012/bkcs.2011.32.9.3483].
  4. L. T. Zhang, W. F. Xie, Y. D. H. Xing, Wu, A. W. Li, W. Zheng and Y. S. Zhang, Chin. Phys. Lett. 20, 1366 (2003). https://doi.org/10.1088/0256-307X/20/8/354
  5. D. P. Kang, H. Y. Park and D. H. Han, Bulletin of the Korean Institute of Electrical and Electronic Material Engineers 10, 31 (2000).
  6. Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li and G. H. Hud, Progress in Materials Science 57, 660 (2012) [DOI: http://dx.doi.org/10.1016/j.pmatsci.2011.08.001].
  7. C. F. Bottcher, Theory of Electric Polarisation, Elsevier, Amsterdam (1973).
  8. L. Frenkel, S. J. Kryder and A. A. Maryott, Journal of Chemical Physics 44, 2610 (1966) [DOI: http://dx.doi.org/10.1063/1.1727101].
  9. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 15, 12 (2008) [DOI: 10.1109/T-DEI.2008.4446732].
  10. J. Y. Lee, Y. W. Song. S. W. Kim and H. K. Lee, Materials Chemistry and Physics. 77, 455 (2002) [DOI: http://dx.doi.org/10.1016/S0254-0584(02)00092-5].

Cited by

  1. Dielectric relaxation and ionic conduction in 66%Silica/CW229-3/HW229-1 microcomposite polymer vol.78, 2015, https://doi.org/10.1016/j.compositesb.2015.03.090
  2. High-Performance Printed Circuit Board Materials Based on Benzoxazine and Epoxy Blend System vol.26, pp.4, 2018, https://doi.org/10.1007/s13233-018-6046-7