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ABSTRACT: he purpose of this paper is to present a rational method for analyzing, designing, or evaluating the spread mooring systems used 
with floating drilling units. This paper presents a validated model to calculate the catenary static configuration. A semi‐resolution approach is 
presented in this paper that is capable of predicting the static performance of a caisson mooring system. The solution is derived as a function of 

only three parameters, which can be solved numerically by implementing different kinds of boundary conditions. The efficiency and accuracy of the 
method permit quick parametric studies for the optimal selection of the system particle, which is undoubtedly useful for a preliminary design. A 
number of numerical examples demonstrate the validity of the adopted approach. The paper contains a complete description of the test cases and 

reports the results in such a way that it can provide a "benchmark” test for users and programmers of computer codes for flexible riser analysis. 

1. Introduction

The main idea to create a program which could calculate 

cable configurations was brought about by the lack of numerical 

simulators in naval and offshore engineering. In recent years, 

several computer programs for analysis of flexible risers have 

been developed. The programs apply various methods for static 

calculations. The methods and computer codes are also different 

with respect to user friendliness, generality, efficiency and 

accuracy. Cables are widely used in offshore engineering, for exam-

ple in mooring floating structures or in deploying tethered 

subsea units from floating vessels. Neglecting the dynamic 

excitation due to the wave action on the moored structure or 

the support vessel and the variation of the underwater current 

in the time domain, the cable system can be treated as a 

static one under the action of steady forces due to current or 

the thrusters of the subsea unit. In addition to its strength 

characteristics, marine cables often contain power conductors, 

instrumentation lines, fibre optics, etc. As a result, the dia-

meter of the cable increases such that the hydrodynamic drag 

effect of the underwater current. There are three different types 

of marine cable system which can be tackled by a static theory. 

1. Submersible-cable system. The cable is fixed at both ends 

to stationary structures. It is necessary to evaluate the variation 

in cable tension along its length and the configuration of 

the cable. 2. Towing cable system (Fig. 1) The upper end is 

adjoined to an advancing ship on the sea surface. The lower 

end is connected to a subsea unit. The unit itself may have its 

own propulsion system, in which case it is necessary to know 

the location of the subsea unit. This is of practical importance for 

subsea operations as it can show whether certain locations can 

be reached or not. 3. Mooring cable system (Fig. 2), The upper 

end of the cable is connected to a floating structure on the 

free surface, while the lower end is fixed at the sea floor by 

an anchor. The tension in the cable and the horizontal trail of 

the moored structure are the primary concerns in this case.

The importance of the static analysis of marine cables is 

threefold: 1. Many questions of practical importance can be 

Fig. 1 Towing cable
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Fig. 2 Mooring system

answered without the full dynamic analysis which is undou-

btedly more expensive. 2. When dynamic analysis is needed, it 

is often linearized as a perturbation problem around the static 

solution. In this case, the static analysis becomes a pre-

requisite to the dynamic analysis. 3. Static modelling and 

theoretical prediction provides a cheap and quick technique 

through which the interaction between the various parameters 

as well as the role of each parameter can be understood and a 

better design achieved. It is especially useful for the preli-

minary design. A number of different approaches have been 

adopted to solve the static problem under various assump-

tions and simplifications accordingly (Eames, 1968; Trianta-

fyllou, 1982; Every, 1982; Macgregor, 1990). The frequently 

used methods for the three-dimensional quasi-static analysis of 

mooring cable systems include the lumped-parameter (mass) 

method (Leonard and Nath, 1981), the standard finite-element 

technique (Webster, 1975), the cable element method (Peyrot 

and Goulios, 1979; Peyrot, 1980) .Most assumptions are made 

on the following aspects:

l. Dimensionality. Quite a few practical problems can be 

modelled as two-dimensional problems which, needless to 

say, are easier than three-dimensional ones. 2. Elasticity. A lot of 

static problems involve little elastic deformation which pro-

vides a sound base to treat the cable as an inelastic one. The 

governing equations for an inelastic cable are simpler than 

those for an elastic cable. 3. Nature of the drag. The drag 

caused by the current flowing past the cable is still an 

unsolved problem; hence, it is an area open to different 

manipulations.

The cable analysis is basically a two point boundary value 

problem where some or all of the boundary values are 

known at either end of the cable. Dependent upon the types 

of practical problem, boundary conditions of different kinds are 

imposed. A common flaw present in most available methods 

is the inability to handle the different types of boundary 

conditions in a uniform manner. Another feature of the exis-

ting research is that most authors have experimented with 

different numerical techniques in solving the governing equa-

tions, but failed to explore and hence exploit the analytic pro-

perties, rendering the numerical solutions less efficient and 

less accurate. Whilst in comparison with the vast application of 

cables in marine operation, the theoretical research work is 

hardly proportional, experimental research work is even less so. 

Little work has been done specifically on the equilibrium 

configuration of marine cables, especially in the three-dimen-

sional case. As a result, it is difficult to verify and confirm 

theoretical results against experimental ones. In this paper a 

rather general semi-analytical method has been developed. 

The basic idea is to consider a three-dimensional cable under a 

given distribution of many point loads. A compact exact 

solution is derived as a function of three parameters only, 

which can be solved numerically by implementing different kinds 

of boundary conditions. The real marine cable, where the drag 

load cannot be given beforehand, is solved by using an 

iterative procedure.

2. MATHEMATICAL MODELLING

2.1 Fundamental assumptions

The basic assumptions in the present modelling of mooring 

cables are as follows: 

1. Zero torsional stiffness

2. Zero bending stiffness. 

3. Non-negative tension. 

4. The cable is uniform. 

5. Hydrodynamic loading acting on an element of cable 

depends only upon the dimensions of that element, the angle 

of that element to the current and the current speed, and is 

not affected by neighbouring elements. The loading can be 

resolved into two components of normal and tangential forces 

which are dependent upon the normal component and the 

tangential component of the current velocity, respectively.

2.2 Coordinate system and discretization

A Cartesian coordinate system (x,y,z) is adopted, as shown 

in Fig. 3. Let s and p be the unstrained and the strained arch 

lengths along the cable, respectively. Whilst maintaining the 

generality, it is possible to let one end of the cable stay at the 

origin of the coordinate system. Conceptually a continuous marine 

cable can be discretised into many small segments, each under 

one point load which as a whole represents the distributed drag 

force along the cable. The end points of the segments and the 

point loads are numbered by the index i which runs from 0 at 

one end to N at the other.

2.3 Equilibrium equation
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The statement of equilibrium at a point P between the 

coordinates  and  on the strained cable profile gives 

Equations (1)-(3):



 






 (1)



 

  




 (2)



 

  




 

 (3)

 

Fig. 3 Coordinate system and discretisation

where T is the cable tension, , and   are the three 

components of the force acting at the end s=0, 
 , 

 , and 


  are the external force components acting on the cable 

segment, L is the unstrained length of the whole cable and W 

is its weight in the fluid. In addition to the force equilibrium, 

the cable must satisfy the compatibility and constitutive rela-

tions. These are:

• Compatibility relation, Equations (4):




 


 


   (4)

• Constitutive relation: this is a mathematical expression 

of Hooke's law Equation (5) in the form:

 

  (5)

where E is Young's modulus and A is the cross-sectional 

area of the cable in the unstrained profile.

2.4 Boundary conditions

The mathematical formulation of the problem is completed 

by the addition of the boundary conditions. Corresponding to 

the three types of marine cable system, there are three sets of 

mathematical boundary conditions: 1. Both ends of the cable 

are fixed at known points, that is Equations (6)-(7): 

       (6)

         (7)

where coordinates ,  and  are given. 2. One end is 

fixed, the other is subjected to known force components, that 

is Equations (8)-(11):

       (8) 

   (9)



   (10) 



   (11)

where coordinates  ,  and   are given. 3. A 

combination of the previous two cases, that is Equations 

(12)-(15):

       (12)



   (13)



   (14)

  (15)

3. PARAMETRIC ANALYTIC SOLUTION

By invoking the following relations: 










 , 








 , 








 

and noting that 


 is given as a function of the tension T 

through Equation(5), we have Equations (16)-(18): 







 






 

 (16)







 








 (17)







 










 (18)

where by squaring Equations (1)-(3) and substituting them 

into the compatibility relation the following expression for T 

results Equation (19):

 
  




   

  




  

  




 

  (19)

Integrating these equations over the interval      

gives. Equations (20)-(22):

   


  




   (20)

   


  




   (21)

    


  




   (22)

After some mathematic manipulations, the integrations 

result in the following Equation (23): 
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  

 
  






    

 
  




 

×






sinh 





 




   

  






 
  




 

  

sinh 




 




   

  






 
  




 

 






 (23)

These analytical solutions are given as functions of three 

unknown 

parameters, that is,  , and  . The remaining part of 

this section is concerned with their solution Equations 

(24)-(25):

  

 
  






    

 
  






×






sinh 





 




   

  






 
  




 

  

sinh 




 




   

  






 
  




 

 






(24)

  
 



   



 

 

 

 
  




 

  










 



   



   

  




  

  




 

 

 

 
  




   

  




  

  




 

  








(25)

3.1 Submersible cable

By using Equations (20)-(22) repeatedly, we have Equations 

(26)-(28):






    (26)






    (27)






    (28)

The solution of this nonlinear algebraic equation system 

gives the answer for the three unknowns. Once,  , 

and  are known, the coordinates of any points between   

and  on the strained cable profile are given by Equations 

(29)-(31):

  




 







 (29)

  




 







 (30)

  




 







 (31)

and the tension is given by Equation (19).

3.2 Towing cable

This is an easier situation. The unknown ,  , and  

can be calculated directly by the following relations Equations 

(32)-(34):

  





 (32)

  





 (33)

  





 (34)

3.3 Mooring cable

In this case, two force components can be found readily 

from Equations (35)-(36):

  





 (35)

  





 (36)

and the third one   is solved from Equation (37): 






    (37)

4. DRAG FORCE

Let  represent the averaged current velocity 

vector at an ith cable segment which has two end points with 

coordinates  and  . The normal drag 

component  and the tangential drag component   are 

given by Equations (38)-(39): 

  

    (38)

  

  (39)

Where  and   are the normal and the tangential drag 

coefficients, respectively, d is the diameter of the cable and  

is the density of the fluid.  ,   ,  are given by:
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           

    ,

  

   

                

  

          

         

  

                 

 

       .

5. NUMERICAL ITERATION 

To calculate the cable profile by using Equations(29)-(31), 


 , 

 , and 
  (i=0,1,2,...N) must be known. These drag 

forces, however, depend upon the cable profile, and they 

cannot be known beforehand. In fact they form a part of the 

solution themselves. As a result, an iterative scheme must be 

used to solve the problem. Inside this global iteration, there 

exists another smaller iterative loop to solve the nonlinear 

algebraic equation system of Equations(26)-(28) or Equation 

(37), if the submersible cable problem or mooring cable prob-

lem is to be solved. The Newton- Raphson method is used here 

to seek the solution by solving a succession of linear equation 

systems. As is always true for a nonlinear problem involving 

an iterative solution procedure, the initial estimation plays an 

important role. A bad starting estimate can either deteriorate 

the overall efficiency or make the procedure totally unwor-

kable. In the present study the initial approximation is based 

upon the zero hydrodynamic load situation. This is good for 

the cases where the cable experiences light drag force in com-

parison with its own weight in the fluid. When the drag force 

becomes dominant, however, more iterations are needed to 

increase the current speed step-by-step until the prescribed 

value. The results of the previous iteration serve as the starting 

estimate of the current iteration.

6. NUMERICAL EXAMPLES

The above analysis forms a suite of programs which predicts 

the equilibrium profile of a marine cable. In this section some 

results are presented to demonstrate the validity of the adopted 

method. Fig. 4 shows the configuration of an elastic steel 

catenary in air predicted by the present method. It is sus-

pended between two rigid supports which are not at the same 

level. Shown on the same figure is the exact analytic solution 

(Irvine, 1981). They agree with each other very well. Fig. 5 

shows the change in configuration of a hanging cable in air 

under the action of a point load. Fig. 6 and Fig. 7 show the 

theoretical predictions of marine cables in the presence of 

ocean current against the results of experimental measure-

ment (Kojima et al., 1986). In Fig. 4 the cable is 340 m long 

and in Fig. 5 it is 310 m long. Both have a diameter of 0.02 m, 

Young's modulus of 2×1011 N/m2, and the same weight dist-

ribution in water at 2.25 N/m. The experimental results cor-

respond to a current speed of 0.514 m/sec for both cases. The 

agreement between the theoretical and the experimental re-

sults is good. Also shown on the two figures is the effect of the 

ocean current through illustration of the different cable confi-

gurations at different current speeds. It is clear that the cur-

rent plays a significant role. Fig. 8 shows the configuration of 

a three-dimensional submersible cable. A verification of the 

results is not possible since no report on three-dimensional 

experimental work is available.

Table 1 shows the configuration of an elastic steel catenar

Table 1 Configuration of steel catenary in air

X N E (N/m2) d (m)

0 0 2×1011 0.02

5.25 -2.5 2×10
11 0.02

25.67 -12.5 2×10
11 0.02

58.64 -17.5 2×10
11 0.02

65.85 -15.5 2×10
11 0.02

79.64 -12.65 2×10
11 0.02

82.91 -9.56 2×10
11 0.02

92.5 -8.6 2×10
11 0.02

Fig. 4 Configuration of steel catenary in air. L=100m, d=0.02 m, 

E=2×1011 N/m2 (-) presentmethod; (O) analytic solution 

(Irvine,1981)

Fig. 5 Change in configuration of a hanging cable to a point 

load. L=100m, d=0.02 m, E=2×10
11 N/m2
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yin air predicted by the present method. It is suspended between 

two rigid supports which are not at the same level. Shownon 

the Fig. 4 is the exact analytic solution (Irvine, 1981).

Fig. 6 Measured and predicted configurations of a marine cable. 

(O) measurements, current speed U=0.514 m/sec; (-) pre-

sent method, U=0.514 m/sec; (-.-) present method, U=0.2 

m/sec; (---) present method, no current

Fig. 7 Measured and predicted configurations of a marine cable. 

(O) measurements, current speed U=0.514 m/sec; (-) pre-

sent method, U=0.514 m/sec; (-.-) present method, U= 0.2 

m/sec; (---) present method, no current

Fig. 8 Predicted three-dimensional marine cable configurations. 

L=300m, d=0.032m, E=2×1011 N/m2.(-.-) no current; (--) 

current speed U=0.1m/sec

Conclusions

The approach developed in this paper is of practical 

importance, with the capacity of answering various questions 

arising from subsea interventions involving tethered subsea 

systems. In addition to that, the semi-analytic method, within the 

limitations of all assumptions made, is highly accurate and 

efficient. The semi-analytic method analysis, which shows whether 

a facility will pay for itself, is by far the most important tools to 

be used in reaching the right investment decision. However, they 

entail rather laborious and routine calculations which are less 

interesting to make than the calculation. The appeal of such 

performance calculation techniques (for example, that of simu-

lation with the use of a computer) can lead to an excessive 

amount of the valuable project time being spent on them. If a 

team has a suitable simulation model available, and is expe-

rienced in its use, then the work can be done quickly.
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