Rhizoctonia solani AG 2-2IIIB에 의한 마 뿌리썩음병의 한국 내 발생

홍성기 1* · 이재국 1 · 이영기 1 · 이상엽 2 · 김완 2 · 심홍식 1

¹ 농촌진흥청 국립농업과학원 작물보호과, ² 농촌진흥청 국립농업과학원 농업미생물과

Occurrence of Stem Canker and Tuber Rot on Yam Caused by *Rhizoctonia solani* AG 2-2IIIB in Korea

Sung Kee Hong^{1*}, Jae Kook Lee¹, Young Kee Lee¹, Sang Yeob Lee², Wan Gyu Kim² and Hong Sik Shim¹

¹Crop Protection Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Suwon 441-707, Korea ²Agricultural Microbiology Division, NAAS, RDA, Suwon 441-707, Korea

(Received 12, November 2012., Revised 27, November 2012., Accepted 3, December 2012)

ABSTRACT: Stem canker and tuber rot symptoms were observed on yam grown in Andong and Jinju, Korea in 2011. A total of 20 isolates of *Rhizoctonia* and allied fungi were obtained from the symptomatic plants. Among the isolates, 8 isolates were identified as *Rhizoctonia solani* and 12 isolates as *Ceratobasidium* sp. based on rDNA-internal transcribed spacer (ITS) sequence similarity. In the cluster analysis of rDNA-ITS sequences, 7 isolates of *R. solani* belonged to AG 2-2IIIB and remaining one to AG 1-1A. In addition, among the 12 isolates of *Ceratobasidium* sp., 7 isolates belonged to AG-Fa, three isolates to AG-A and the other two isolates to AG-Fb and AG-O, respectively. Pathogenicity tests showed that all the *R. solani* AG 2-2IIIB isolates are pathogenic. The results indicate that *R. solani* AG 2-2IIIB is an important pathogen causing stem canker and tuber rot on yams grown in the study areas. This is the first report of *R. solani* AG 2-2IIIB causing stem canker and tuber rot of yam in Korea.

KEYWORDS: Rhizoctonia solani, Stem canker, Tuber rot, Yam

서 론

마는 백합목 마과식물(Dioscoreacea)로 현재까지 10속 650여종이 알려져 있으며, 한국, 일본, 중국 등 동북아지 역과 열대, 아열대 지역에 널리 분포하고 있는 다년생 덩 굴식물이다(Ahn et al., 2005). 국내에서 재배되는 마는 주로 Dioscorea batatas Decne.와 Dioscorea opposita Thunb.이며, 그들의 괴근은 전분, 단백질, 지질, 미네랄 및 비타민뿐만 아니라, 다양한 생리활성 물질들을 포함하여 건강기능성 식품원료로 각광받고 있다. 마의 재배가 증가 되고 전국적으로 확대되면서 마의 연작재배로 인한 토양 전염성 병해로 마의 생산량과 품질이 감소되어 재배농가 에 큰 피해를 주고 있어 이에 대한 연구가 시급한 실정 이다. 국내에서는 마에서 발생하는 병해로 10종류가 보고 되어 있고(Kim et al., 2009), 마 저장 병으로서 Penicillium 속에 의한 푸른곰팡이병이 보고되었으나(Kim et al., 2008), 마 재배 중에 발생하여 줄기 지제부와 괴근에 썩음병을 일으키는 Rhizoctonia에 의한 병해 연구는 이루어진 바

*Corresponding author <E-mail:sukihong@korea.kr>

없다. 따라서 본 연구는 줄기 지제부와 괴근의 병든 조직 을 채집하여 *Rhizoctonia*와 유사 속 균을 분리하고, 염기 서열분석 및 병원성 검정을 실시하여 마 줄기 지제부 및 괴근썩음병을 일으키는 병원균을 동정하고자 실시하였다.

재료 및 방법

병원균 분리 및 배양

2011년 안동과 진주의 마 재배포장에서 지제부와 괴근 에 발생하여 썩음병을 일으키는 *Rhizoctonia*와 유사 속 균을 분리하기 위해 병든 식물체를 채집하여 건전부위와 병든 부위의 경계부위를 5×5 mm 크기로 자르고, 1% 차 아염소산나트륨 용액으로 1분간 표면소독한 후 멸균수 에 3회 세척하였다. 여과지를 사용하여 남아있는 물기를 제거한 후 물한천배지(WA)에 치상하여 2~3일간 25°C 항온기에 두었다. 병든 식물체로부터 자라나오는 균사선 단을 떼어 내어 감자한천배지(PDA)에 옮겨 배양하였다. *Rhizoctonia*와 유사 속 20개 균주가 분리되었고(Table 1), 분리된 균주들은 4°C 냉장고에 보관하면서 균 동정을 위한 염기서열분석 및 병원성 검정을 위한 실험에 사용하였다.

Isolate	Location	Fungi	GenBank accession no.	
Y1044	Jinju	Rhizoctonia solani	JX913809	
Y1059	Jinju	Rhizoctonia solani	JX913810	
Y1063	Jinju	Rhizoctonia solani	JX913811	
Y1066	Jinju	Rhizoctonia solani	JX913812	
Y1068	Jinju	Rhizoctonia solani	JX913813	
Y1069	Jinju	Rhizoctonia solani	JX913814	
Y1071	Jinju	Rhizoctonia solani	JX913815	
Y1075	Andong	Rhizoctonia solani	JX913816	
Y1035	Jinju	Ceratobasidium sp.	JX913817	
Y1053	Jinju	Ceratobasidium sp.	JX913818	
Y1055	Jinju	Ceratobasidium sp.	JX913819	
Y1058	Jinju	Ceratobasidium sp.	JX913820	
Y1064	Jinju	Ceratobasidium sp.	JX913821	
Y1065	Jinju	Ceratobasidium sp.	JX913822	
Y1073	Jinju	Ceratobasidium sp.	JX913823	
Y1087	Andong	Ceratobasidium sp.	JX913824	
Y1088	Andong	Ceratobasidium sp.	JX913825	
Y1089	Andong	Ceratobasidium sp.	JX913826	
Y10104	Andong	Ceratobasidium sp.	JX913827	
Y10106	Andong	Ceratobasidium sp.	JX913828	

Table 1. Rhizoctonia solani and Ceratobasidium sp. isolates obtained from diseased yam used in this study

분리균주의 DNA 추출, 염기서열 분석 및 균 동정

분리된 균주의 genomic DNA를 추출하기 위해 Potato dextrose broth(PDB)배지에 접종하고, 25°C에서 3일간 배 양하였다. 균사체는 miracloth로 수거하고 동결건조하여 마쇄한 후 DNeasy kit(QIAGEN, Germany)를 사용하여 Genomic DNA를 추출하였다. ribosomal DNA의 Internal transcribed spacer(ITS) 영역의 염기서열을 분석하기 위해 ITS1과 ITS4 프라이머(White et al., 1990)가 사용되었고, PCR 반응조건은 94°C에서 5분간 predenaturation, 94°C 에서 50초 denaturation, 52°C에서 90초 annealing, 72°C 에서 1분간 extension을 30회 반복하였고, 최종적으로 72 °C에서 7분간 post extension하였다. 증폭된 PCR 산물은 Gel extraction kit(Bioneer)를 사용하여 순화 후 염기서열 을 분석하였다. 마에서 분리된 균주들의 ITS 염기서열은 GenBank에 등록하였다(JX913809~JX913828). 분리된 균 을 동정하고, 균사융합군을 결정하기 위해 GenBank에 등 록된 Rhizoctonia와 Ceratobasidium 속에 속하는 여러 균사융합군의 염기서열을 포함시켜 상동성을 분석하고, Phylogenetic tree를 작성하였다. 염기서열은 DNASTAR 프로그램의 sequman을 사용하여 편집하고, CLUSTAL W 분석법(Thompson et al., 1994)을 사용하여 정렬하 였다. 정렬된 염기서열은 Mega 5.0(Tamura et al., 2011) 프로그램을 사용하여 Neighbor-Joining(NJ)법으로 분석하 였고, 분류군간 sequence distance는 Kimura-2 parameter 법으로 계산되었고, Bootstrap 분석이 수행되었다.

병원성 검정

염기서열분석에 의해 동정된 다양한 균사용합군 (Anastomosis group, AG)에 속하는 *Rhizoctonia*와 *Ceratobasidium*속 10균주를 병원성 검정에 공시하였다. 각각의 공시균주를 PDA배지에 배양한 후 자라나는 균사 선단에서 직경 6 mm의 균사 disc를 절취하여 마 줄기지 제부에 접종하고, 비닐로 덮어 25±3℃ 온실에 10일간 유 지한 후 줄기 기부에서 병 발생 여부를 조사하였다. 괴근 의 균 접종은 먼저 1% 차아염소산나트륨 용액에 괴근을 10분간 표면소독한 후 멸균수에 3회 세척하였다. 표면소 독 후 상처를 준 공시균주의 균사 disc를 마 괴근에 부착 하였다. 접종된 마 괴근은 물에 적신 3매의 페이퍼 타올 이 깔린 프라스틱 상자에 놓은 후 25℃ 항온기에서 10일 간 유지한 후 병 발생을 확인하였다. 모든 실험은 3반복 으로 실시하였다.

결과 및 고찰

병 발생 및 병징

병은 영여자를 심은 마 포장에서 50% 정도로 심하게 발생하였고 군데군데 식물체가 말라 죽는 증상이 나타났 다(Fig. 1A). 지상부에서는 마 잎과 줄기가 고사하면서 조 기에 낙엽이 지고, 줄기 지제부는 적갈색이나 갈색으로 썩었다(Fig. 1B). 지하부의 마 괴근은 표면이 넓고 희미한 검은색의 무늬가 나타났고(Fig. 1C), 내부 조직은 갈변하

Fig. 1. Symptoms of stem canker and tuber rot on yam. A, Diseased stems and leaves in a field of yam; B, Stem canker with reddish brown discoloration on basal stem of yam; C, Black scurf on the surface of a diseased tuber; D, Brown rot in the internal tissue of a diseased tuber.

면서 썩었다(Fig. 1D).

염기서열 상동성 분석, 균 동정 및 균사융합군 분류

공시된 20개 균주들의 rDNA-ITS 염기서열에 대한 상동성 분석을 실시한 결과, 8균주는 *Rhizoctonia solani*, 나머지 12균주는 *Ceratobasidium* sp.로 동정되었다(data not shown). 두 속에 속하는 균주들의 균사융합군을 확인 하기 위해 Genbank로부터 검색된 다양한 균사융합군의 염기서열을 기초로 cluster 분석을 실시한 결과, *R. solani* 로 동정된 8균주들 중 7균주는 균사융합군 AG 2-2IIIB 에 속하였고, 1균주만이 AG 1-1A에 속하였다(Fig. 2A). 또한, *Ceratobasidium* sp.로 동정된 12균주들 중 균사융 합군 7균주는 AG-Fa, 3균주는 AG-A, 2균주는 각각 AG-Fb와 AG-O에 속하였다(Fig. 2B).

병원성 검정

R. solani와 Ceratobasidium sp.에 속하는 균사융합군 균주들의 마에 대한 병원성 검정을 실시하였다(Table 2). R. solani AG 2-2IIIB 속하는 Y1044, Y1059 및 Y1066 균주들은 마의 줄기와 괴근에 병원성이 있었으나, R. solani AG 1-1A에 속하는 Y1075균주와 Ceratobasidium sp.에 속하는 공시된 모든 균주는 마의 줄기와 괴근에서 병원성이 없는 비병원성균으로 확인되었다. 위의 결과로 부터 마의 줄기와 괴근에 썩음증상을 일으키는 병원균은 R. solani AG 2-2IIIB라는 것이 확인되었다.

R. solani는 국내에서 재배되는 벼, 옥수수, 감자 등을 포함한 각종 작물에서 65개의 식물에 병을 일으키는 것으 로 보고된 중요한 식물 병원균이다(Kim et al., 1995). R. solani는 종 complex로서 적어도 13개의 균사융합군(AG 1-AG 13)으로 구분되고(Carling, 1996), rDNA-ITS 염기 서열 분석에 의해 유전적으로 뒷받침되었다(Sharon et al., 2006). R. solani 균사융합군 중 AG 2는 균사융합 빈도를 기초로 3개의 subgroup, AG 2-1, AG 2-2 및 AG 2-3으 로 구분되고, AG 2-2균주들은 배양형과 ITS 염기서열을

Fig. 2. Neighbor-joining trees of *Rhizoctonia solani*(A) and *Ceratobasodium* sp. isolates(B) based on rDNA-internal transcribed spacers (ITS1-5.8S-ITS2) region sequences. The numbers above the nodes represent bootstrap values of > 60% out of 1,000 bootstrap replication.

Isolate	Euroi	Anastomosis group	Pathogenicity ^a	
	rungi		Basal stem	Tuber
Y1044	Rhizoctonia solani	AG 2-2IIIB	+	+
Y1059	Rhizoctonia solani	AG 2-2IIIB	+	+
Y1066	Rhizoctonia solani	AG 2-2IIIB	+	+
Y1075	Rhizoctonia solani	AG 1-1A	-	-
Y1035	Ceratobasidium sp.	AG-O	-	-
Y1055	Ceratobasidium sp.	AG-Fa	-	-
Y1064	Ceratobasidium sp.	AG-Fa	-	-
Y1073	Ceratobasidium sp.	AG-Fb	-	-
Y1087	Ceratobasidium sp.	AG-A	-	-
Y1088	Ceratobasidium sp.	AG-A	-	-

Table 2. Pathogenicity of *Rhizoctonia solani* and *Ceratobasidium* sp. isolates on basal stems and tubers of yam by artificial inoculation with mycelial discs

^aPathogenicity to stem and tuber was measured 10 days after artificial inoculation +, rot; -, no disease.

기초로 AG 2-2111B, AG 2-21V 및 AG 2-2LP로 구분되 어 왔다(Salazar et al., 1999). 마의 줄기 및 괴근썩음병 증상을 일으키는 병원균으로 동정된 AG 2-2IIIB 균주들 의 25°C PDA상에서 균총특성은 불규칙한 균사체 덩어리 와 동심원을 형성하고, 초기에 담황색이지만 후기에는 진 갈색으로 변하였다(data not shown). 이러한 배양적 특성 은 기존에 보고된(Blazier and Conway, 2004) AG 2-2IIIB균주들의 균총 특성과 잘 일치하는 것이다. 국내에서 AG 2-2IIIB 균주들은 구릿대, 참당귀, 수박, 왕골, 갯기름 나물, 도라지, 은빛담쟁이덩굴, 옥수수, 생강에서 보고되 었고(Kim et al., 1995), 외국에서는 사탕무, 벤트그라스, 옥수수의 주요 병해로 알려져 있다(Salazar et al., 1999). 중 국에서는 AG 1-IB와 AG 2-1에 의한 부채마(Dioscorea nipponica Makino) 유묘의 입고병(Bai et al., 2010), 일본 에서는 둥근마(Dioscorea opposita Thunb.)에서 R. solani 에 의한 괴근썩음병이 보고되었지만(Ozawa et al., 1994), R. solani AG 2-2IIIB에 의한 마(Dioscorea batatas) 뿌리 썩음병은 국내뿐만 아니라 외국에서도 보고된 바 없다.

적 요

2011년 안동과 진주의 마 재배포장에서 줄기 지제부 및 괴근썩음 증상이 나타났다. 병징을 나타내는 부위로부터 *Rhizoctonia* 와 유사 속에 속하는 20개 균주가 분리되었다. rDNA-internal transcribed spacer(ITS) 염기서열 상동성을 기 초로 8균주는 *Rhizoctonia solani*, 12균주는 *Ceratobasidium* sp.로 동정되었다. rDNA- ITS 염기서열의 cluster 분석에 의해 *R. solani*에 속하는 8개 균주 중 7개 균주는 균사융 합군 AG 2-2IIIB, 1균주는 AG 1-1A에 속하였다. 또한, *Ceratobasidium* sp.에 속하는 12균주 중 7균주는 AG-Fa, 3균주는 AG-A, 나머지 2균주는 각각 AG-Fb와 AG-O에 속하였다. *R. solani* AG 2-2IIIB 균주들은 마의 줄기와 괴근에 병원성이었으나 *R. solani* AG 1-1A와 모든 *Ceratobasidium* sp. 균주는 비병원성이라는 것이 확인되 었다. 이 결과는 조사지역에서 *R. solani* AG 2-2IIIB가 마의 줄기 및 괴근썩음병을 일으키는 중요한 병원균이라 는 것을 나타낸다. 이 연구는 국내에서 *R. solani* AG 2-2IIIB에 의한 마 뿌리썩음병에 대하여 처음으로 보고하는 것이다.

감사의 글

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연 구개발사업(과제번호: PJ0074902012)의 지원에 의해 이 루어진 것이며, 이에 감사드립니다.

참고문헌

- Ahn, J. H., Son, K. H., Sohn, H. Y. and Kwon, S. T. 2005. In vitro culture of adventitious roots from Dioscorea nipponica Makino for the production of steroidal saponins. Kor. J. Plant Biotechnol. 32:317-223.
- Bai, Q., Wang, N. and Gao, J. 2010. First report of seedling blight caused by *Rhizoctonia solani* on *Dioscorea nipponica* in China. *Plant Disease*. 94:915.
- Blazier, S. R. and Conway, K. E. 2004. Characterization of *Rhizoctonia solani* isolates associated with patch diseases on turfgrass. *Proc. Oklah. Acad. Sci.* 84:41-51.
- Carling, D. E. 1996. Grouping in *Rhizoctonia solani* by hyphal anastomosis reaction. In: Sneh *et al.* (eds) *Rhizoctonia* species: Taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 37-47.
- Kim, W. K., Hwang, Y. S. and Yu, S. H. 2008. Two Species of *Penicillium* associated with blue mold of yam in Korea. *Mycobiology*. 36:217-221.
- Kim, W. G, Cho, W. D. and Ryu, H. Y. 1995. Diagnosis and control of *Rhizoctonia* diseases on crops. National Agricultural

Science and Technology Institute, Suwon. (in Korean).

- Kim, W. G, Koo, H. M., Kim, K. H., Hyun, I. H., Hong, S. K., Cha, J. S., Lee, Y. K., Kim, K. H., Choi, H. S., Kim, D. G. and Park, B. Y. 2009. List of plant diseases in Korea. 5th ed. Korean Society of Plant Pathology, Anyang. (in Korean).
- Ozawa, S., Obata, H., Yasuoka, S. and Tanaka, F. 1994. Occurrence of root rot of Chinese yam [*Dioscorea opposita*], caused by *Rhizoctonia solani* Kuehn, in Hokkaido. *Annu Rep. Soc. Plant Protect. N. Jpn.* 45:43-44. (in Japanese).
- Salazar, O., Schneider, J. H. M., Julian, M. C., Keijer, J. and Rubio, V. 1999. Phylogenetic subgrouping of *Rhizoctonia solani* AG 2 isolates based on ribosomal ITS sequences. *Mycologia*. 91:459-467.
- Sharon, M., Kuninaga, S., Hyakumachi, M. and Sneh, B. 2006. The advancing identification and classification of *Rhizoctonia* spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. *Mycoscience*. 47:299-

316.

- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. doi:10.1093/molbev/msr121.
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. *Nucl. Acids Res.* 22:4673-4680.
- White, T. J., Bruns, T. D., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal genes from phylogenetics. 315-322. *In*: Innis MA., Gelfrand DH, Sninsky JJ and White TJ Eds. *PCR Protocols*. Academic Press, SanDiego, California, USA.