DOI QR코드

DOI QR Code

Biological Control of Paraconiothyrium minitans S134 on Garlic White Rot Caused by Sclerotium cepivorum

Paraconiothyrium minitans S134의 마늘흑색썩음균핵병에 대한 생물적 방제

  • Lee, Sang Yeob (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Hong, Sung Kee (Crop Protection Division, NASS, RDA) ;
  • Choi, In Hu (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Chon, Yong Dal (Taean-gun Agricultural Development & Technology Center) ;
  • Kim, Jeong Jun (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Han, Ji Hee (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Kim, Wan Gyu (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), RDA)
  • 이상엽 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 홍성기 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 최인후 (농촌진흥청 국립식량과학원 바이오에너지작물연구센터) ;
  • 전용달 (농촌진흥청 충남 태안군농업기술센터) ;
  • 김정준 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 한지희 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김완규 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2012.11.08
  • Accepted : 2012.12.11
  • Published : 2012.12.31

Abstract

Sclerotium cepivorum is a causal agent of white rot disease on different plants including Allium species such as garlic. A mycoparasite, Paraconiothyrium minitans S134 was selected for biological control of sclerotinia rot of garlic caused by S. cepivorum. The experiment was carried out in a garlic field in Taean from October in 2011 to June in 2012. Spore suspension of the mycoparasite was treated twice onto soil surface around garlic plants in sowing in 2011 and late Feb. in 2012, and disease rating was made June in 2012. Incidence of white rot in the twice-application plot of the mycoparasite ($5{\times}10^6$ spores/mL) and in the fluquinconazole (WP)-treated plot was 6.8% and 0.4%, respectively, whereas that of control was 19.5%. As the results, P. minitans S134 could be a prospective biofungicide for biological control of white rot of garlic.

Sclerotium cepivrum은 마늘과 같은 파속작물에 발생하는 흑색썩음균핵병의 병원균이다. 기생진균 Paraconiothyrium minitans S134 균주는 마늘 흑색썩음균핵병의 생물적 방제를 위하여 선발되었다. 포장실험은 태안에서 2011년 10월부터 2012년 6월까지 실시하였다. P. minitans S134 균주의 포자현탁액($5{\times}10^6m{\ell}$)을 마늘 종구를 파종직후와 다음해 2월 하순에 주당 $100m{\ell}$씩 각각 관주처리하여 6월 5일에 흑색썩음균핵병 발생 억제효과를 조사하였다. P. minitans S134 균주를 2회 관주처리구가 6.8%, 플루퀀코나졸수화제 분의처리구가 0.4%, 무처리구가 19.5%의 흑색썩음균핵병이 발생하였다. 그러므로 P. minitans S134 균주는 마늘 흑색썩음균핵병에 대한 유망한 미생물농약으로서 가능성을 나타내었다.

Keywords

References

  1. Clarkson, J. P., Payne, T,. Mead, A. and Whipps, J. M. 2002. Selection of fungal biological control agents for control of white rot by sclerotial degradation in a UK soil. Plant Pathology 51:735-745. https://doi.org/10.1046/j.1365-3059.2002.00787.x
  2. Copping, L. G. 2009. The manual of biocontrol agents. Four edition, BCPC. UK. 851 pp.
  3. Edizioni ETS Pisa. 2006. Stratgies for managemant of Sclerotium cepivorum in garlic. Journal of Plant Pathology 88(3):253-261.
  4. Entwistle, A. R. 1992. Controlling Allium white rot (Sclerotium cepivorum) without chemicals. Phytoparasitica 20:121S-125S. https://doi.org/10.1007/BF02980422
  5. Ghaffar, A. 1969. Biological control of white rot of onion. Mycopathologia et mycologia applicata 38:113-127. https://doi.org/10.1007/BF02051681
  6. Guerber, J. C., Liu, B., Correll, J. C. and Johnston, P. R. 2009. Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two gene introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95:872- 895.
  7. Kim, Y. K. 2005. Ecology and control strategy of white rot of garlic and onion. Rural Development Administration Cooperative Research Report 6-12. (in Korea).
  8. McLean, K. L., Hunt J. and Stewart, A. 2001a. Compatibility of the biocontrol agent Trichoderma harzianum C52 with selected fungicides. N. Z. Plant Prot. 54:84-88.
  9. McLean, K. L., Swaminathan, J. and Stewart, A. 2001b. Increasing soil temperature to reduce sclerotial viability of Sclerotium cepivorum in New Zealand soils. Soil Biology & Biochemistry 33:137-143. https://doi.org/10.1016/S0038-0717(00)00119-X
  10. McLean, K. L. and Stewart, A. 2000. Application stratgies for control of onion white rot by fungal antagonists. N. Z. J. Crop Hort. Sci. 28:115-122. https://doi.org/10.1080/01140671.2000.9514131
  11. Punithalingam, E. 1982. Coniothyrium minitans. CMI Descriptions of Pathogenic and Bacteria No. 732.
  12. Lee, S. Y., Kim, W. G., Hong, S. K., Weon, H. Y. and Park, K. S. 2011. Inhibitory effect of Paraconiothyrium minitans CM2 on sclerotial germination of Sclerotinia sclerotiorum and S. minor causing sclerotinia rot of lettuce. Kor. J. Mycol. 39:131-135. (in Korea). https://doi.org/10.4489/KJM.2010.39.2.131
  13. Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. doi: 10.1093/molbev/msr121.
  14. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  15. Ulacio-Osorio, D., Zavaleta-Meja1, E., Martnez-Garza1, A. and Pedroza-Sandoval, A. 2006. Strategies for management of Sclerotium cepivorum in garlic. Journal of Plant Pathology 88(3): 253-261.
  16. Verkley, G. J. M., Silva, M. da, Wicklow, D. T. and Crous, P. W. 2004. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Studies in Mycology 50:323-335.
  17. Whipps J. M. and Gerlagh, M. 1992. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Myco. Res. 96(11):897-907. https://doi.org/10.1016/S0953-7562(09)80588-1