DOI QR코드

DOI QR Code

Recovery of Copper Powder form MoO3 Leaching Solution Using Cementation Reaction System

MoO3 침출공정 폐액으로부터 치환반응 시스템을 이용한 구리 분말 회수에 대한 연구

  • Kim, Geon-Hong (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE)) ;
  • Hong, Hyun-Seon (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE)) ;
  • Jung, Hang-Chul (Advanced Materials & Processing Center, Institute for Advanced Engineering(IAE))
  • 김건홍 (고등기술연구원 신소재공정센터) ;
  • 홍현선 (고등기술연구원 신소재공정센터) ;
  • 정항철 (고등기술연구원 신소재공정센터)
  • Received : 2012.09.28
  • Accepted : 2012.10.29
  • Published : 2012.12.28

Abstract

Recovery of copper powder from copper chloride solution used in $MoO_3$ leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average $1{\mu}m$ in size.

Keywords

References

  1. D. B. Larry, F. J. JR. Joseph and L. W. Barron: Process chemistry for water and wastewater treatment, Prentice- Hall, Inc., Englewood Cliffs, New Jersey, (1982) 307.
  2. K. Risto, L. Jukka, P. Leena, G. Thomas and L. Heikki: Hydrometallurgy, 56 (2000) 93. https://doi.org/10.1016/S0304-386X(00)00077-3
  3. C. S. Brooks: Met. Finish. 88 (1990) 21.
  4. K. Juttner, U. Gallar and H. Schmieder: Electrochmica Acta, 45 (2000) 2575. https://doi.org/10.1016/S0013-4686(00)00339-X
  5. A. G. Chmielewski, T. S. Urbanski and W. Migdal: Hydrometallurgy, 45 (1997) 333. https://doi.org/10.1016/S0304-386X(96)00090-4
  6. M. C. Ruiz and R. Padilla: Hydrometallurgy, 48 (1998) 313. https://doi.org/10.1016/S0304-386X(98)00006-1
  7. S. D. Ridder and F. S. Biancaniello: Mat. Sci. Eng., 98 (1988) 17.
  8. Y. Yamamichi, T. Kudo, M. Nakayama and M. Orii: J. Jpn. Soc. of Powder and Powder Metallurgy, 21 (1975) 227. https://doi.org/10.2497/jjspm.21.227
  9. S. Takaki and T. Daido: Jpn. Kokai Tokkyo Koko, 14 (1989) 1.
  10. T. Agelidis, K. Fytianos and G. Vasilikiotis: Chemosphere 14 (1985) 1001. https://doi.org/10.1016/0045-6535(85)90021-9
  11. M. G. Pavlovic, Lj. J. Pavlovic, I. D. Doroslovacki and N. D. Nikolic: Hydrometallurgy, 73 (2004) 155. https://doi.org/10.1016/j.hydromet.2003.08.005
  12. H. S. Hong, H. C. Jung, G. H. Kim and M. S. Kong: J. Kor. Powder Metallurgy Institute, 16 (2009) 351. https://doi.org/10.4150/KPMI.2009.16.5.351
  13. H. S. Hong, M. S. Kong, J. K. Ghu, J. K. Lee and H. G. Suk: J. Mater. Sci. Technol., 24 (2008) 141.
  14. L. Makhloufi, B. Saidani and H. Hammache: Wat. Res. Pergamon, 34(9) (2000) 2517. https://doi.org/10.1016/S0043-1354(99)00405-4
  15. A. Dib and L. Makhloufi: Chemical Engineering and Processing, 43 (2004) 1265. https://doi.org/10.1016/j.cep.2003.12.006
  16. E. C. Lee, F. Lawson and K. N. Han: Hydrometallurgy, 3 (1978) 7. https://doi.org/10.1016/0304-386X(78)90003-8
  17. B. Zhao, Z. Liu, Z. Zhang and L. Hu: J. Solid State Chem., 130 (1997) 157. https://doi.org/10.1006/jssc.1997.7276
  18. Q. Hua, D. Shang, W. Zhang, K. Chen, S. Chang, Y. Ma, Z. Jiang, J. Yang and W. Huang: Langmuir, 27(2) (2011) 655.

Cited by

  1. Development of Pre-treatment for Tin Recovery from Waste Resources vol.21, pp.2, 2014, https://doi.org/10.4150/KPMI.2014.21.2.142