DOI QR코드

DOI QR Code

Analysis of Tropospheric Zenith Path Delay of GPS Code Based Precise Time Comparison Technique

GPS 코드 기반 정밀시각비교기법의 대류층 천정지연모델 분석

  • Received : 2012.10.23
  • Accepted : 2012.11.14
  • Published : 2012.12.31

Abstract

This paper shows results of the precise time comparison technique based on GPS code transfer in order to determine the UTC(Universal Time Coordinated) and generate TAI(International Atomic Time). CGGTTS(CCTF Group on GNSS Time Transfer Standards) which is generated by GPS timing receivers is used as the international standard format. For geodetic receivers which provide RINEX formats as GPS time transfer results, ROB(Royal Observatory of Belgium) developed a conversion program, r2cggtts, and have distributed the program to timing laboratories participating in TAI link all over the world. Timing laboratories generate the time comparison results of GPS code transfer by the program and send them to BIPM(Bureau International des Poids et Mesures) periodically. In this paper, we introduce the delay features generated while GPS code is transferred and the calibration methods of them. Then, we introduce the tropospheric delay and analyze the results of Saastamoinen model and NATO(North Atlantic Treaty organization) model. Saastamoinen model is the representative tropospheric zenith path delay model and NATO model is applied to the legacy r2cggtts program.

본 논문은 국제원자시(TAI)를 생성하고 세계협정시(UTC)를 결정하기 위해 GPS에서 전달되는 코드를 기반으로 한 시각비교 기법에 대한 연구 결과이다. 시각비교를 위한 국제표준 양식으로 CGGTTS가 사용되고 있는데, CGGTTS 표준은 시각용 GPS 수신기에서만 제공되고 측지용 GPS 수신기에서는 RINEX 형식으로 위성의 정보를 제공한다. 측지용 수신기를 시각비교용으로 사용하기 위해 ROB에서는 RINEX 형식의 데이터를 이용해서 CGGTTS 형식으로 변환하는 r2cggtts 프로그램을 제공하고 TAI link에 참여하는 전 세계 시각비교 연구실들은 해당 프로그램을 통해 GPS 코드 신호에 의한 시각비교 자료를 BIPM에 주기적으로 전송한다. 본 논문에서는 위성으로부터 수신기까지 코드 신호가 전달될 때 발생하는 오류 요소들과 그 보상 방법을 간단히 소개한다. 오류요소 중 대류층 지연에 대해 자세히 소개하고 기존 프로그램에 적용된 NATO 모델과 현재 가장 널리 사용되고 있는 Saastamoinen 모델을 비교 분석한다.

Keywords

References

  1. D. W. Allan and C. Thomas, "Technical Directives for Standardization of GPS Time Receiver Software," Metrologia, 31, pp.69-79, 1994. https://doi.org/10.1088/0026-1394/31/1/014
  2. J. Azoubib and W. Lewandowski, "CGGTTS GPS/GLONASS Data format version 02," 7th CGGTTS meeting, Nov. 1998.
  3. G. Petit and E. F. Arias, "Use of IGS products in TAI applications," Journal of Geodesy, Vol. 83, Issue 3-4, pp327-334, March 2009. https://doi.org/10.1007/s00190-008-0240-y
  4. P. Defraigne, G. Petit and C. Bruyninx, "Use of Geodetic receivers for TAI," 33rd Precise Time and Time Interval (PTTI) meeting, pp.341-348, Nov. 2001.
  5. P. Defraigne and C. Bruyninx, " Time Transfer for TAI using a geodetic receiver, An example with the Ashtech ZX11-T," GPS solutions, March 2001.
  6. J. Levine, "Time transfer using multi-channel GPS receivers," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-46, pp.392-398, 1999.
  7. J. Kouba and T. Springer, "New IGS Station and Satellite Clock Combination," GPS Solutions, Vol. 4, No. 4, pp.1-36, 2001. https://doi.org/10.1007/PL00012859
  8. F. Roosbeek, P. Defraigne and C. Bruyninx, "Time Transfer Experiments Using GLONASS P-code Measurements from RINEX Files," GPS Solutions, Vol. 5, No. 2, pp. 51-62, 2001. https://doi.org/10.1007/PL00012886
  9. P. Defraigne, Q. Baire and N. Guyennon, "GLONASS and GPS PPP for Time and Frequency Transfer," Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. pp909-913, May 2007.
  10. NATO (North Atlantic Treaty Organization), North Atlantic Treaty Organization, Doc. 4294, pp. A-6-34 - A-6-37, 1993.
  11. J. Saastamoinen, "Contributions to the theory of atmospheric refraction," In three parts. Bulletin Geodesique, No. 105, pp. 279-298; No. 106, pp. 383-397; No. 107, pp. 13-34, 1973.
  12. P. Defraigne, A. H. Harmegnies and G. Petit, "Time and Frequency transfer combining GLONASS and GPS data," Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint Conference of the IEEE International, pp.1-5, May 2011.
  13. V. B. Mendes and R. B. Langley, "Tropospheric zenith delay prediction accuracy for airborne GPS high-precision Positioning," Proceedings of The Institute of Navigation 54th Annual Meeting, Denver, CO, U. S. A. pp. 337-347, June 1998.
  14. J. P. Collins, "Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System," M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 203, University of New Brunswick, Fredericton, New Brunswick, Canada, Sept. 1999.

Cited by

  1. Comparison of Time Offsets by Tropospheric Zenith Path delay models and Mapping Functions in GPS Time Transfer vol.18, pp.6, 2014, https://doi.org/10.6109/jkiice.2014.18.6.1317