DOI QR코드

DOI QR Code

A Study on the Group Routing Algorithm in DHT-based Peer-to-Peer System

DHT 기반 P2P 시스템을 위한 그룹 라우팅 알고리즘에 관한 연구

  • Park, Yong-Min (Dept. of Medical Information System, Sahmyook Health University College)
  • 박용민 (삼육보건대학교 의료정보시스템과)
  • Received : 2012.10.29
  • Accepted : 2012.12.08
  • Published : 2012.12.31

Abstract

As the P2P System is a distributed system that shares resources of nodes that participate in the system, all the nodes serve as a role of server and client. Currently, although systematic, structured P2P systems such as Chord, Pastry, and Tapestry were suggested based on the distributed hash table, these systems are limited to $log_2N$ for performance efficiency. For this enhanced performance efficiency limited, the article herein suggests group routing algorithm. The suggested algorithm is a node-to-group routing algorithm which divides circular address space into groups and uses a concept of pointer representing each group, which is an algorithm where routing is performed based on pointer. To evaluate algorithm performance, a comparative analysis was conducted on average hops, routing table size, and delayed transmission for chord and routing, a signature algorithm in P2P systems. Therefore, enhanced performance is verified for comparative items from the simulation results.

P2P 시스템은 시스템에 참여하는 노드들의 자원을 공유하는 분산 시스템으로 여기에 참여하는 노드들은 서버와 클라이언트의 역할을 모두 수행한다. 현재 분산 해쉬 테이블(Distributed Hash Table)을 기반으로 한 체계적이고 구조화된 P2P 시스템들인 Chord, Pastry, Tapestry 등이 제안되었으나 이 시스템들은 성능 효율이 log으로 제한되어 있다. 이러한 제한된 성능 효율을 개선하기 위해본 논문에서는그룹 단위의 라우팅 알고리즘을 제안한다. 제안하는 알고리즘은 node-to-group 라우팅 알고리즘으로 원형 주소 공간을 그룹으로 나누고 각 그룹을 대표하는 포인터(Pointer)라는 개념을 사용하여, 포인터를 기반으로 라우팅이 이루어지는 알고리즘이다. 알고리즘의 성능을 평가하기 위해 P2P 시스템의 대표적인 알고리즘인 chord와 라우팅을 위한 평균 홉 수, 라우팅 테이블 크기, 전송 지연에 관해 비교 분석 하였으며, 결과적으로 비교 항목에 대해 성능이 향상되었음을 실험을 통해 확인 하였다.

Keywords

References

  1. What Is Web 2.0, http://www.oreillynet.com
  2. I.W. Lee, H.J. Park, "A Trend of P2P-Based Service and Charging Technics," Electronics and Telecommunications Trends, Oct, 2007.
  3. H.J. Park, K.R. Park, "P2P Technology Trend and Application to Home Network," Electronics and Telecommunications Trends, Oct, 2006.
  4. H.C. Kwon, Y.H. Moon, J.B. Gu, S.K. Kho, J.H. Nah, J.S. Jang, "Standardization and Technology Trend of Peer-to-Peer Communication," Electronics and Telecommunications Trends, Feb, 2007.
  5. B. O. Kim, I. W. Lee, H. J. Park, "Trend of Distributed Hash Tables-Based P2P," Electronics and Telecommunications Trends, Dec, 2006.
  6. Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. "Chord: A scalable Peer-To-Peer lookup service for internet applications." In Proceedings of the 2001 ACM SIGCOMM Conference, pages 149-160, 2001.
  7. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, "Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and Routing." Tech. Rep. UCB/CSD-01-1121, UC Berkeley, EECS, 2001.
  8. Antony Rowstron and Peter Druschel. "Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems". In IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), pages 329-350, 2001.
  9. Evangelia Kalyvianaki and Ian A. Pratt. Building adaptive peer-to-peer systems. In Peer-to-Peer Computing, pages 268-269, 2004.
  10. E. K. Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim, "A Survey and Comparison of Peer-to-Peer Overlay Network Schemes," IEEE Communications Survey and Tutorial, March 2004.
  11. S. Androutsellis-Theotokis and D. Spinellis, "A Survey of Peer-to-Peer File Sharing Technologies," Athens Univ. of Economics and Business White Paper (WHP-2002-03), 2002
  12. GT-ITM, http://www.isi.edu/nsnam/ns/ns-topogen.html
  13. R. Lobb, A. P. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo, "Adaptive Overlay Topology for Mesh-based p2p-tv Systems" in ACM NOSSDAV, June 2009.

Cited by

  1. IGP 라우팅 프로토콜의 경로선택 검증을 위한 구현 사례 vol.19, pp.9, 2014, https://doi.org/10.9708/jksci.2014.19.9.197