Abstract
Proposed is a hybrid randomizing function using two asymptotically optimal randomizing functions: Elias function and Peres function. Randomizing function is an mathematical abstraction of producing a uniform random bits from a source of randomness with bias. It is known that the output rate of Elias function and Peres function approaches to the information-theoretic upper bound. Especially, for each fixed input length, Elias function is optimal. However, its computation is relatively complicated and depends on input lengths. On the contrary, Peres function is defined by a simple recursion. So its computation is much simpler, uniform over the input lengths, and runs on a small footprint. In view of this tradeoff between computational complexity and output efficiency, we propose a hybrid randomizing function that has strengths of the two randomizing functions and analyze it.
본 논문에서는 점근적으로 최적인 두가지의 무작위화 함수인 일라이어스(Elias) 함수와 페레즈(Peres) 함수의 장단점을 고려한 하이브리드 무작위화 함수를 제안한다. 무작위화 함수는 편향성이 있는 무작위수의 공급원으로부터 균등한 무작위수를 생성하는데 쓰이는 알고리즘을 수학적으로 추상화한 것이다. 일라이어스 함수와 페레즈 함수는 입력의 길이가 무한으로 증가함에 따라 그 출력효율성이 정보론적 한계치에 다가간다. 특히, 일라이어스 함수는 주어진 (유한의) 입력길이에 대해 최적인 무작위화 함수이다. 그러나 그 계산은 간단하지 않고, 주어진 입력길이에 의존한다. 반면, 페레즈 함수는 정해진 입력의 길이에 대해 출력효율이 최적이지는 않으나, 점근적으로는 최적이고, 간단한 재귀식에 의해 정의되어서 그 계산이 매우 간단하고 적은 메모리를 필요로 한다. 이러한 계산복잡도와 출력효율에 대한 두가지 무작위화 함수의 장단점에 주목하여, 각각의 장점을 고려한 하이브리드 무작위화 함수를 제안하고 이를 분석한다.