DOI QR코드

DOI QR Code

Effects of Mollugin on Hepatic Cytochrome P450 in Male ICR Mice as Determined by Liquid Chromatography/Tandem Mass Spectrometry

  • Song, Min (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University) ;
  • Hong, Miri (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Choi, Hyun Gyu (College of Pharmacy, Yeungnam University) ;
  • Jahng, Yurngdong (College of Pharmacy, Yeungnam University) ;
  • Lee, Seung Ho (College of Pharmacy, Yeungnam University) ;
  • Lee, Sangkyu (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
  • Received : 2012.11.28
  • Accepted : 2012.12.16
  • Published : 2012.12.31

Abstract

Mollugin isolated from Rubia cordifolia is known to have anti-inflammatory, anti-cancer, and anti-viral activities. In the present study, a cocktail probe assay and LC-MS/MS were used to investigate the modulating effect of mollugin on cytochrome P450 (CYP) enzymes in male ICR mice. After mollugin was orally administrated to mice at the 20, 40, or 80 mg/kg for 3 days, the activities of CYP in hepatic S-9 fractions were investigated. Unlike the selective inhibitory effect of mollugin on CYP1A2-catalyzed phenacetin O-deethylation in vitro, mollugin only significantly inhibited the activity of CYP2E1-catalyzed chlorzoxazone 6-hydroxylase in vivo. The activities of other CYPs were only slightly altered by mollugin. The results of this study suggest that mollugin might cause herb-drug interactions via the selective inhibition of CYP2E1 in vivo.

Keywords

References

  1. Zhou, S.; Koh, H. L.; Gao, Y.; Gong, Z. Y.; Lee, E. J. Life Sci. 2004, 74, 935. https://doi.org/10.1016/j.lfs.2003.09.035
  2. Kim, H.; Kim, K. B.; Ku, H. Y.; Park, S. J.; Choi, H.; Moon, J. K.; Park, B. S.; Kim, J. H.; Yea, S. S.; Lee, C. H.; Lee, H. S.; Shin, J. G.; Liu, K. H. Drug Metab. Dispos. 2008, 36, 1010. https://doi.org/10.1124/dmd.107.019612
  3. Guengerich, F. P. Adv. Pharmacol. 1997, 43, 7. https://doi.org/10.1016/S1054-3589(08)60200-8
  4. Markowitz, J. S.; DeVane, C. L.; Boulton, D. W.; Carson, S. W.; Nahas, Z.; Risch, S. C. Life Sci. 2000. 66, 133.
  5. Markowitz, J. S.; Donovan, J. L.; Lindsay DeVane, C.; Sipkes, L.; Chavin, K. D. J. Clin. Psychopharmacol. 2003. 23, 576. https://doi.org/10.1097/01.jcp.0000095340.32154.c6
  6. Lu, Y.; Liu, R.; Sun, C.; Pan, Y. J. Sep. Sci. 2007, 30, 1313. https://doi.org/10.1002/jssc.200600440
  7. Sastry, M. N.; Claessens, S.; Habonimana, P.; De Kimpe, N. J. Org. Chem. 2010, 75, 2274. https://doi.org/10.1021/jo100024b
  8. Jeong, S. Y.; Zhao, B. T.; Lee, C. S.; Son, J. K.; Min, B. S.; Woo, M. H. Planta Med. 2012, 78, 177. https://doi.org/10.1055/s-0031-1280265
  9. Kim, K. J.; Lee, J. S.; Kwak, M. K.; Choi, H. G.; Yong, C. S.; Kim, J. A.; Lee, Y. R.; Lyoo, W. S.; Park, Y. J. Eur. J. Pharmacol. 2009, 622, 52. https://doi.org/10.1016/j.ejphar.2009.09.008
  10. Jeong, G. S.; Lee, D. S.; Kim, D. C.; Jahng, Y.; Son, J. K.; Lee, S. H.; Kim, Y. C. Eur. J. Pharmacol. 2011, 654, 226. https://doi.org/10.1016/j.ejphar.2010.12.027
  11. Jun do, Y.; Han, C. R.; Choi, M. S.; Bae, M. A.; Woo, M. H.; Kim, Y. H. Phytother. Res. 2011, 25, 724. https://doi.org/10.1002/ptr.3329
  12. Ho, L. K.; Don, M. J.; Chen, H. C.; Yeh, S. F.; Chen, J. M. J. Nat. Prod. 1996, 59, 330. https://doi.org/10.1021/np960200h
  13. Chung, M. I.; Jou, S. J.; Cheng, T. H.; Lin, C. N.; Ko, F. N.; Teng, C. M. J. Nat. Prod. 1994, 57, 313. https://doi.org/10.1021/np50104a020
  14. Kim, H.; Chok, H. K.; Jeong, T. C.; Jahng, Y.; Kim, D. H.; Lee, S. H.; Lee, S. Food Chem Toxicol. 2012, 51C, 33. [Epub ahead of print]
  15. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265.