DOI QR코드

DOI QR Code

Synthesis of boehmite powder from aluminum etching solution

알루미늄 에칭액으로부터 베마이트 분말 합성

  • Park, Young-Soo (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Wui, In-Hee (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 박영수 (한국세라믹기술원, 이천분원) ;
  • 위인희 (한국세라믹기술원, 이천분원) ;
  • 조우석 (한국세라믹기술원, 이천분원) ;
  • 김진호 (한국세라믹기술원, 이천분원) ;
  • 황광택 (한국세라믹기술원, 이천분원)
  • Received : 2012.10.16
  • Accepted : 2012.11.16
  • Published : 2012.12.31

Abstract

Boehmite (AlOOH) powder was synthesized using waste aluminium etching solution. In waste solution, precipitated phase was gibbsite ($Al(OH)_3$), and boehmite (AlOOH) phase was obtained at pH of 7 and 8 controlled by addition of acid. Boehmite powder was obtained by washing process to remove the Na ion in precipitated solution. Mean particle size of obtained powder was 40 nm. Boehmite phase transformed to ${\alpha}-Al_2O_3$ phase via ${\gamma}-Al_2O_3$, ${\delta}-Al_2O_3$, and ${\Theta}-Al_2O_3$.

알루미늄 에칭 폐액으로부터 boehmite(AlOOH) 분말을 합성하였다. 폐액에서 침전되어 있는 결정상은 gibbsite ($Al(OH)_3$)였으며, 산을 이용하여 pH를 조절한 결과 pH가 7~8 영역에서 boehmite 결정상이 얻어졌다. 침전 분말에 남아 있는 Na 이온을 제거하고자 세척공정을 진행하여 boehmite 분말을 얻었다. 합성한 분말의 평균입경은 약 40 nm이었다. 또한 열처리 온도가 증가함에 따라 boehmite는 ${\gamma}-Al_2O_3$${\delta}-Al_2O_3$, ${\Theta}-Al_2O_3$를 거쳐 ${\alpha}-Al_2O_3$ 결정상으로 상전이가 일어났다.

Keywords

References

  1. H. Cho and B.W. Lee, "High temperature properties of surface-modified Hastelloy X alloy", Journal of the Korean Crystal Growth and Crystal Technology 22/4 (2012) 183. https://doi.org/10.6111/JKCGCT.2012.22.4.183
  2. H.J. Jeong, J.H. Lee and S.J. Boo, "Investigation of aluminium- induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication", Journal of the Korean Crystal Growth and Crystal Technology 20/6 (2010) 254. https://doi.org/10.6111/JKCGCT.2010.20.6.254
  3. B.C. Lippens and J.H. de Boer, "Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction", Acta Crystallogr. 17 (1964) 1312. https://doi.org/10.1107/S0365110X64003267
  4. H.C. Stumpf, A.S. Russell, J.W. Newsome and C.M. Tucker, "Thermal transformations of aluminas and alumina hydrates", Ind. Eng. Chem. 42 (1950) 1398. https://doi.org/10.1021/ie50487a039
  5. G.W. Brindley and I.R. Haya, "Crystallographic aspects of some decomposition and recrystallization reactions", Progress in Ceramic Science Oxford Pergamon Press 3 (1963) p. 3.
  6. R.K. Oberlander, "Aluminas for catalysts: their preparation and properties", Applied Industrial Catalysis 3 Chapter 4, Academic Press (1984) p. 63.
  7. F. Habashi, "Bayer's process for alumina production : A historical perspective", Bull. Hist. Chem 17/18 (1995) 15.
  8. A. Al Sadi, E. Bonetti, P. Mattioli and G. Valdre, "Internal friction, thermal and structural analysis of nanocrystalline aluminium", J. Alloys Compounds 211-1 (1994) 489. https://doi.org/10.1016/0925-8388(94)90550-9
  9. E. Bonetti, G. Scipione, G. Valdre, S. Enzo, R. Frattini and P.P. Macri, "A study of nanocrystalline iron and aluminum metals and fe-al intermetallic by mechanical alloying", J. Mater. Sci. 30 (1995) 2220. https://doi.org/10.1007/BF01184564
  10. Dariusz Oleszak and Paul H. Shingu, "Nanocrystalline metals prepared by low energy ball milling", J. Appl. Phys. 79 (1996) 2975. https://doi.org/10.1063/1.361294
  11. H.H. Jo, S.K. Lee, C.S. Jung and B.M. Kim, "A nonsteady state fe analysis of al tubes hot extrusion by porthole die", J. Mat. Process Tech. 173 (2006) 223.
  12. S.G. Woo and H.R. Lee, "Tungsten wire tip sharpening by electrochemicl etching", J. Kor. Institute of Information Sci. and Eng. 31 (1998) 45.
  13. K. Wefers and C. Misra, "Oxides and Hydroxides of Aluminum", ALCOA Laboratories, Pennsylvania, USA (1987) p. 20.
  14. G. Paglia, C.E. Buckley, A.L. Rohl, R.D. Hart, K. Winter, A.J. Studer, B.A. Hunter and J.V. Hanna, "Boehmite derived $\gamma$-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, $\gamma$-alumina", Chem. Mater. 16 (2004) 220. https://doi.org/10.1021/cm034917j
  15. X. Krokidis, P. Raybaud, A.E. Gobichon, B. Rebours, P. Euzen and H. Toulhoat, "Theoretical study of the dehydration process of boehmite to $\gamma$-alumina", J. Phys. Chem. B 105 (2001) 5121. https://doi.org/10.1021/jp0038310
  16. S.J. Wilson, "The dehydration of boehmite, AlOOH, to $Al_{2}O_{3}$", J. Solid State Chem. 30 (1979) 247. https://doi.org/10.1016/0022-4596(79)90106-3

Cited by

  1. Effect of process conditions on crystal structure of Al PEO coating. I. Unipolar pulse and coating time vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.059
  2. Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte vol.24, pp.2, 2014, https://doi.org/10.6111/JKCGCT.2014.24.2.065