DOI QR코드

DOI QR Code

Volume Integral Equation Method for Problems Involving Multiple Diamond-Shaped Inclusions in an Infinite Solid under Uniaxial Tension

인장 하중을 받는 무한 고체에 포함된 다수의 다이아몬드 형 함유체 문제 해석을 위한 체적 적분방정식법

  • Lee, Jung-Ki (Dept. of Mechanical and Design Engineering, Hongik Univ.)
  • 이정기 (홍익대학교 기계정보공학과)
  • Received : 2011.08.09
  • Accepted : 2011.09.27
  • Published : 2012.01.01

Abstract

A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in unbounded isotropic elastic solids containing multiple interacting isotropic or anisotropic diamond-shaped inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel diamond-shaped cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. The effects of the number of isotropic or anisotropic diamond-shaped inclusions and of the various fiber volume fractions for the circular inclusions circumscribing its respective diamond-shaped inclusion on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy and efficiency of the method are examined through comparison with results obtained using the finite element method.

체적 적분방정식법(Volume Integral Equation Method)이라는 새로운 수치해석 방법을 이용하여, 서로 상호작용을 하는 등방성 또는 이방성 다이아몬드 형 함유체를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 매우 효과적으로 수행하였다. 즉, 등방성 기지에 다수의 등방성 또는 이방성 다이아몬드 형 함유체의 중심이 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에, 다양한 다이아몬드 형을 포함하는 원형 실린더 함유체의 체적비에 대하여, 중앙에 위치한 다이아몬드 형 함유체와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하기 위하여, 체적 적분방정식법을 이용한 해를 유한요소법을 이용한 해와 비교해 보았다.

Keywords

References

  1. Eshelby, J. D., 1957, "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems," Proceedings of the Royal Society of London, Series A, A241, pp. 376-396.
  2. Hashin, Z., 1972, Theory of Fiber Reinforced Materials, NASA CR-1974.
  3. Achenbach, J. D. and Zhu, H., 1990, "Effect of Interphases on Micro and Macromechanical Behavior of Hexagonal-Array Fiber Composites," Transactions of ASME, Journal of Applied Mechanics, Vol. 57, pp. 956-963. https://doi.org/10.1115/1.2897667
  4. Lee, J. K. and Mal, A. K., 1997 (Mar.), "A Volume Integral Equation Technique for Multiple Inclusion and Crack Interaction Problems," Transactions of the ASME, Journal of Applied Mechanics, Vol. 64, pp. 23-31. https://doi.org/10.1115/1.2787282
  5. Lee, J. and Mal, A., 1998, "Characterization of Matrix Damage in Metal Matrix Composites under Transverse Loads," Computational Mechanics, Vol. 21, pp. 339-346. https://doi.org/10.1007/s004660050310
  6. Naboulsi, S., 2003, "Modeling Transversely Loaded Metal-Matrix Composites," Journal of Composite Materials, Vol. 37, pp. 55-72. https://doi.org/10.1177/0021998303037001468
  7. Lee, J. K., Han, H. D. and Mal, A., 2006, "Effects of Anisotropic Fiber Packing on Stresses in Composites," Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 33-36, pp. 4544-4556. https://doi.org/10.1016/j.cma.2005.10.012
  8. Ju, J. W. and Ko, Y. F., 2008, "Micromechanical Elastoplastic Damage Modeling for Progressive Interfacial Arc Debonding for Fiber Reinforced Composites," International Journal of Damage Mechanics, Vol. 17, pp. 307-356. https://doi.org/10.1177/1056789508089233
  9. Jasiuk, I., 1995, "Cavities vis-a-vis Rigid Inclusions: Elastic Moduli of Materials with Polygonal Inclusions," International Journal of Solids and Structures, Vol. 32 (3-4), pp. 407-422. https://doi.org/10.1016/0020-7683(94)00119-H
  10. Noda, N.-A., Kawashima, Y., Moriyama, S. and Oda, K., 1996, "Interaction of Newly Defined Stress Intensity Factors for Angular Corners in a Row of Diamond-Shaped Inclusions," International Journal of Fracture, Vol. 82, pp. 267-295. https://doi.org/10.1007/BF00013162
  11. Rodin, G. J., 1996, "Eshelby'S Inclusion Problem for Polygons and Polyhedra," Journal of the Mechanics and Physics of Solids, Vol. 44 (12), pp. 1977-1995. https://doi.org/10.1016/S0022-5096(96)00066-X
  12. Ru, C. Q., 1999, "Analytic Solution for Eshelby's Problem of an Inclusion of Arbitrary Shape in a Plane or Half-Plane," Transactions of ASME, Journal of Applied Mechanics, Vol. 66, pp. 315-322. https://doi.org/10.1115/1.2791051
  13. Nakasone, Y., Nishiyama, H. and Nojiri, T., 2000, "Numerical Equivalent Inclusion Method: a New Computational Method for Analyzing Stress Fields in and around Inclusions of Various Shapes," Materials Science and Engineering: A, Vol. 285, pp. 229-238. https://doi.org/10.1016/S0921-5093(00)00637-7
  14. Kawashita, M. and Nozaki, H., 2001, "Eshelby Tensor of a Polygonal Inclusion and Its Special Properties," Journal of Elasticity, Vol. 64, pp. 71-84. https://doi.org/10.1023/A:1014880629679
  15. Nozaki, H., Horibe, T. and Taya, M., 2001, "Stress Field Caused by Polygonal Inclusion," JSME International Journal, Vol. 44 (4), pp. 472-482. https://doi.org/10.1299/jsmea.44.472
  16. Nakai, T. and Nozaki, H., 2008, "A Numerical Equivalent Inclusion Method Using the Solution of Polyhedral Inclusions," Bulletin of the College of Education Ibaraki University, Vol. 57, pp. 105-112.
  17. Dong, C. Y., Lo, S. H. and Cheung, Y. K., 2003, "Numerical Solution of 3D Elastostatic Inclusion Problems Using the Volume Integral Equation Method," Computer Methods in Applied Mechanics and Engineering, Vol. 192 (1-2), pp. 95-106. https://doi.org/10.1016/S0045-7825(02)00534-0
  18. Franciosi, P., 2005, "On the Modified Green Operator Integral for Polygonal, Polyhedral and Other Non-Ellipsoidal Inclusions," International Journal of Solids and Structures, Vol. 42 (11-12), pp. 3509-3531. https://doi.org/10.1016/j.ijsolstr.2004.11.007
  19. Chen, M.-C. and Ping, X.-C., 2009, "Analysis of the Interaction within a Rectangular Array of Rectangular Inclusions Using a New Hybrid Finite Element Method," Engineering Fracture Mechanics, Vol. 76, pp. 580-593. https://doi.org/10.1016/j.engfracmech.2008.12.002
  20. Zou, W., He, Q., Huang, M. and Zheng, Q., 2010, "Eshelby's Problem of Non-Elliptical Inclusions," Journal of the Mechanics and Physics of Solids, Vol. 58(3), pp. 346-372. https://doi.org/10.1016/j.jmps.2009.11.008
  21. Lee, J. K., 2010, "Volume Integral Equation Method for Multiple Isotropic Inclusion Problems in an Infinite Solid Under Uniaxial Tension," Transactions of the KSME A, Vol. 34(7), pp. 881-889. https://doi.org/10.3795/KSME-A.2010.34.7.881
  22. ADINA User's Manual, 2008, Version 8.5, ADINA R & D, Inc..
  23. Lee, J. K. and Mal, A. K., 1995, "A Volume Integral Equation Technique for Multiple Scattering Problems in Elastodynamics," Applied Mathematics and Computation, Vol. 67, pp. 135-159. https://doi.org/10.1016/0096-3003(94)00057-B
  24. Lee, K. J. and Mal, A. K., 1990, "A Boundary Element Method for Plane Anisotropic Elastic Media," Transactions of ASME, Journal of Applied Mechanics, Vol. 57, pp. 600-606. https://doi.org/10.1115/1.2897065
  25. Buryachenko, V. A., 2007, Micromechanics of Heterogeneous Materials, Springer, New York.
  26. Banerjee, P. K., 1993, The Boundary Element Methods in Engineering, McGraw-Hill, England.
  27. PATRAN User's Manual, 1998, Version 7.0, MSC/PATRAN.
  28. Hardiman, N. J., 1954, "Elliptic Elastic Inclusion in a n Infinite Elastic Plate," Quarterly Journal of Mechanics and Applied Mathematics, Vol. 7 (2), pp. 226-230. https://doi.org/10.1093/qjmam/7.2.226
  29. Mal, A. K. and Singh, S. J., 1991, Deformation of Elastic Solids, Prentice Hall, New Jersey.
  30. Hwu, C. and Yen, W. J., 1993 (Sep.), "On the Anisotropic Elastic Inclusions in Plane Elastostatics," Transactions of ASME, Journal of Applied Mechanics, Vol. 60, pp. 626-632. https://doi.org/10.1115/1.2900850
  31. Lee, J. K., Choi, S. J. and Mal, A., 2001, "Stress Analysis of an Unbounded Elastic Solid with Orthotropic Inclusions and Voids Using a New Integral Equation Technique," International Journal of Solids and Structures, Vol. 38 (16), pp. 2789-2802. https://doi.org/10.1016/S0020-7683(00)00182-7
  32. Wang, X., Pan, E. and Sudak, L. J., 2008, "Uniform Stresses inside an Elliptical Inhomogeneity with an Imperfect Interface in Plane Elasticity," Transactions of ASME, Journal of Applied Mechanics, Vol. 75, pp. 054501-1-054501-5. https://doi.org/10.1115/1.2913045