DOI QR코드

DOI QR Code

자발화된 메탄 부상화염에 대한 수소 첨가의 영향

Effect of Hydrogen Addition on Autoignited Methane Lifted Flames

  • Choi, Byung-Chul (Environment & Plant Team, Korean Register of Shipping) ;
  • Chung, Suk-Ho (Clean Combustion Research Center, King Abdullah University of Science and Technology)
  • 투고 : 2011.08.11
  • 심사 : 2011.10.18
  • 발행 : 2012.01.01

초록

고온의 동축류 공기와 수소가 함유된 메탄 연료제트에서 자발화된 층류 부상화염의 특성을 실험적으로 조사하였다. 그 결과로 순수 메탄 제트에서 자발화되는 경계 온도인 920 K 를 초과하는 초기 온도에서 메탄/수소 혼합기의 자발화된 부상화염은 연료 몰분율에 따라 삼지화염 또는 마일드 연소를 보였고, 제트속도에 따라 부상화염의 높이가 증가하는 전형적인 특성을 보였다. 소량의 수소가 첨가된 부상화염의 높이는 메탄의 경우와 유사하게 단열적 점화지연시간의 2 승에 대한 의존성이 유지되었다. 반면에, 초기 온도가 920 K 미만인 경우에서 화염은 수소의 점화 촉진에 의해서 자발화 되었다. 그리고 제트속도가 증가함에 따라 자발화된 부상화염의 높이는 비선형적으로 감소하는 독특한 특성을 보였으며, 수소의 선호확산이 그 현상에 대해서 중요한 역할을 할 것으로 예상된다.

Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

키워드

참고문헌

  1. Markides, C.N. and Mastorakos, E., 2005, "An Experimental Study of Hydrogen Autoignition in a Turbulent Co-Flow of Heated Air," Proc. Combust. Inst., Vol. 30, pp. 883-891. https://doi.org/10.1016/j.proci.2004.08.024
  2. Echekki, T. and Gupta, K.G., 2009, "Hydrogen Autoignition in a Turbulent Jet with Preheated Co- Flow Air," Int. J. Hydrogen Energy, Vol. 34, pp. 8352-8377. https://doi.org/10.1016/j.ijhydene.2009.06.085
  3. Yoo, C.S., Sankaran, R. and Chen, J.H., 2009, "Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: Flame Stabilization and Structure," J. Fluid Mech., Vol. 640, pp. 453-481. https://doi.org/10.1017/S0022112009991388
  4. Richardson, E.S., Yoo, C.S. and Chen, J.H., 2009, "Analysis of Second-Order Conditional Moment Closure Applied to an Autoignitive Lifted Hydrogen Jet Flame," Proc. Combust. Inst., Vol. 32, pp. 1695-1703 https://doi.org/10.1016/j.proci.2008.05.041
  5. Lu, T.F., Yoo, C.S., Chen, J.H. and Law, C.K., 2010, "Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: a Chemical Explosive Mode Analysis," J. Fluid Mech., Vol. 652, pp. 45-64. https://doi.org/10.1017/S002211201000039X
  6. Blouch, J.D., Sung, C.J., Fotache, C.G. and Law, C.K., 1998, "Turbulent Ignition of Non-Premixed Hydrogen by Heated Counterflowing Atmospheric Air," Proc. Combust. Inst., Vol. 27, pp. 1221-1228. https://doi.org/10.1016/S0082-0784(98)80526-2
  7. Blouch, J.D. and Law, C.K., 2003, "Effects of Turbulence on Nonpremixed Ignition of Hydrogen in Heated Counterflow," Combust. Flame, Vol. 132, pp. 512-522. https://doi.org/10.1016/S0010-2180(02)00499-6
  8. Fotache, C.G., Kreutz, T.G. and Law, C.K., 1997, "Ignition of Hydrogen-Enriched Methane by Heated Air," Combust. Flame, Vol. 110, pp. 429-440. https://doi.org/10.1016/S0010-2180(97)00084-9
  9. Choi, B.C., Kim, K.N. and Chung, S.H., 2009, "Autoignited Laminar Lifted Flames of Propane in Coflow Jets with Tribrachial Edge and Mild Combustion," Combust. Flame, Vol. 156, pp. 396-404. https://doi.org/10.1016/j.combustflame.2008.10.020
  10. Choi, B.C. and Chung, S.H., 2010, "Autoignited Laminar Lifted Flames of Methane, Ethylene, Ethane, and n-Butane Jets in Coflow Air with Elevated Temperature," Combust. Flame, Vol. 157, 2348-2356. https://doi.org/10.1016/j.combustflame.2010.06.011
  11. Choi, B.C. and Chung, S.H., 2008, "Characteristics of Methane Turbulent Lifted Flames in Coflow Jets with Initial Temperature Variation," Trans. KSME (B), Vol. 32 No. 12, pp. 970-976. https://doi.org/10.3795/KSME-B.2008.32.12.970
  12. Shaddix, C.R., 1999, "Correcting Thermocouple Measurements for Radiation Loss: A Critical Review," Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, New Mexico.
  13. Chung, S.H. and Lee, B.J., 1991, "On the Characteristics of Laminar Lifted Flames in a Nonpremixed Jet," Combust. Flame, Vol. 86, pp. 62-72 https://doi.org/10.1016/0010-2180(91)90056-H
  14. Lee, B.J. and Chung, S.H., 1997, "Stabilization of Lifted Tribrachial Flames in a Laminar Nonpremixed Jet," Combust. Flame, Vol. 109, pp. 163-172 https://doi.org/10.1016/S0010-2180(96)00145-9
  15. Kee, R.J., Rupley, F.M. and Meeks, E., 1996, "CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics," SAND96-8216.
  16. Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F.L. and Scire, J.J., 2007, "A Comprehensive Kinetic Mechanism for CO, $CH_2O$, and $CH_3OH$ Combustion," Int. J. Chem. Kinet. Vol. 39, pp. 109-136. https://doi.org/10.1002/kin.20218
  17. Choi, B.C., 2011, "Effect of ignition delay time on autoignited laminar lifted flames," Trans. KSME (B), Vol. 35 No. 10, pp. 1025-1031. https://doi.org/10.3795/KSME-B.2011.35.10.1025