DOI QR코드

DOI QR Code

Characteristics of Resistance Performance on Tugboat in Still Water and Waves

예선의 정수중 및 파랑중 저항성능 특성에 관한 연구

  • Park, Jong-Su (Dept. of Marine Science and Production, Kunsan National University) ;
  • Lee, Sang-Min (Dept. of Marine Science and Production, Kunsan National University)
  • 박종수 (군산대학교 해양생산학과) ;
  • 이상민 (군산대학교 해양생산학과)
  • Received : 2012.11.13
  • Accepted : 2012.12.27
  • Published : 2012.12.31

Abstract

It is necessary to accurately evaluate the resistance performance and estimate the towing power of a tugboat for safety towing operation at actual seas. In this study, we have carried out the model tests firstly to investigate the resistance performance and flow characteristics around the tugboat in still water. The experiments are performed in infinite depth in circulation tank using 1/33.75 scaled model from 5kts to 10kts(designed speed 7kts) considering the effect of adverse and favorable current. Then the numerical calculations are executed to analyze the response amplitude operator and added resistance on tugboat due to the waves. The results obtained by the present computation are compared with the those acquired from the experiments in still water. As a result, it is noted that the added resistance become larger at head sea and higher speed conditions. We can also observe that the EHP increase 70 percent in comparison with those in still water.

해상에서의 안전한 예인 업무를 수행하기 위해서는 정확한 예인력의 추정이 필요하며, 이를 위해서는 예선의 저항성능 특성에 대하여 정확히 파악해 두어야 할 필요가 있다. 본 연구에서는 먼저 정수중 예선 주위의 유동 특성 및 예선의 저항추진 성능을 파악하고자 회류수조에서 예선 모형을 이용하여 실험을 실시하였다. 모형실험은 무한수심 조건에서의 1/33.75 축척으로 제작된 예선 모형을 이용하였으며, 설계속도를 7노트로 선정하고 역조와 순조의 조류 영향을 고려하여 5~10노트의 속도 구간에서 각 속도별로 실행하였다. 또한 파랑에 의한 예선의 운동응답 함수와 부가저항을 추정하기 위하여 수치계산을 실행하였으며, 이에 대한 결과를 정수중에서의 실험을 통하여 얻게 된 데이터와 비교하였다. 이와 같은 해석 결과 파랑중 부가저항은 선수파 및 속도가 높아질수록 증가하며, 유효마력은 정수중에 비하여 70 % 정도 증가하고 있는 현상을 확인할 수 있었다.

Keywords

References

  1. Ahn, B. K. and S. M. Lee(2010), Study on the Added Resistance of Barge in Waves, Journal of Navigation and Port Research, Vol. 34, No. 10, pp. 741-746. https://doi.org/10.5394/KINPR.2010.34.10.741
  2. Hong, D. C., S. Y. Hong and E. C. Kim(2001), On the Calculation of Added Resistance of a Ship by Maruo's Formula, Proceeding of the Spring Conference of the Korean Society of Ocean Engineers, pp. 202-207.
  3. Ichinose, Y., M. Tsujimoto, N. Sogihara, K. Shibata and K. Takagi(2010), Estimation of Added Resistance in Waves in a Ballasted Condition, Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol. 11, pp. 109-116. https://doi.org/10.2534/jjasnaoe.11.109
  4. Im, N. K., S. H. Park and G. K. Park(2006), A Study on the Present Status of Safety in Tug-Barge Transportation, Journal of the Korean Society of Marine Environment & Safety, Vol. 12, No. 1, pp. 61-66.
  5. Kashiwagi, M., K. Kawasoe and M. Inada(2000), A Study on Ship Motion and Added Resistance in Waves, Journal of the Kansai Society of Naval Architects of Japan, No. 234, pp. 85-94.
  6. Lee, J. H., H. Kawabe, B. W. Kim and M. K. Ha(2010), Comparison Calculation of the Added Resistance According to Trim Change of Ship with Forward Speed, Proceeding of the Spring Conference of the Society of Naval Architects of Korea, pp. 1086-1091.
  7. Maruo, H. and K. Iwase(1980), Calculation of Added Resistance in Oblique Waves, Journal of the Society of Naval Architects of Japan, Vol. 147, pp. 79-84.
  8. Takagi, K.(1991), Simplified Formulas for the Calculation of Added Resistance, Steady Lateral Force and Turning Moment in Waves, Journal of the Kansai Society of Naval Architects of Japan, No. 216, pp. 121-128.

Cited by

  1. Integrated Load-Split Scheme for Hybrid Ship Propulsion Considering Transient Propeller Load and Environmental Disturbance vol.143, pp.3, 2012, https://doi.org/10.1115/1.4048588
  2. Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques vol.307, pp.None, 2012, https://doi.org/10.1016/j.apenergy.2021.118085
  3. Transient and disturbed propeller load compensation in hybrid propulsion using propeller estimator and predictive control vol.236, pp.1, 2012, https://doi.org/10.1177/14750902211029811