DOI QR코드

DOI QR Code

보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint

  • 투고 : 2012.02.15
  • 심사 : 2012.08.20
  • 발행 : 2012.12.31

초록

이 논문에서는 비탄성 시간이력해석을 통해 보-기둥 접합부 비탄성 전단거동이 구조물 거동에 미치는 영향을 알아보기 위해 지반조건 $S_B$ 내진설계범주 C에 대해서 5층 철근콘크리트 보통모멘트골조를 KBC2009에 맞게 구조설계 하였다. 보 및 기둥 부재의 휨모멘트-곡률 관계는 fiber model로 확인하였으며 보-기둥 접합부 모멘트-회전각 관계는 simple and unified joint shear behavior model과 보-기둥 접합부 모멘트 평형관계를 이용하여 확인하였다. 이력거동은 IDARC 프로그램의 three-parameter model을 활용하여 나타내었다. 2400년 재현주기 수준의 최대지반가속도에 대한 비탄성 시간이력해석 결과 비탄성 보-기둥 접합부를 고려하는 경우 최대밑면전단력은 감소하나 최대지붕층변위, 최대층간변위는 차이가 없었으며 발생한 최대층간변위도 KBC2009의 허용층간변위를 만족하여 구조설계 과정에서 보-기둥 접합부의 비탄성 전단거동을 고려하지 않아도 문제가 없을 것으로 판단된다.

In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

키워드

참고문헌

  1. Kang, S. B. and Kim, T. Y., "Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam- Column Joint," Journal of the Korea Concrete Institute, Vol. 24, No. 5, 2012, pp. 517-524. (doi: http://dx.doi.org/10.4334/JKCI.2012.24.5.517)
  2. Minister of Land, Transport and Maritime Affairs, Korean Building Code, Architectural Institute of Korea, Seoul, Korea, 2009, pp. 51-475.
  3. Minister of Land, Transport and Maritime Affairs, Concrete Structural Design Code, Korea Concrete Institute, Seoul, Korea, 2007, 99, pp. 55-378.
  4. Hoshikuma, J. and Kawashima, K., "Stress-strain Model for Confined Reinforced Concrete in Bridge Piers," Journal of Structural Engineering, Vol. 123, No. 5, 1997, pp. 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
  5. MacGregor, J. G. and Wight, J. K., Reinforced Concrete, 4th Ed, Pearson Prentice Hall, New Jersey USA, 2005, 71 pp.
  6. Kim, J. and LaFave, J. M. "Joint Shear Behavior of Reinforced Concrete Beam-Column Connections subjected to Seismic Lateral Loading," NSEL Report Series Report No. NSEL-020, University of Illinois at Urbana Champaign, 2009, pp. 66-140.
  7. Ghobarah, A. and Biddah, A., "Dynamic Analysis of Reinforced Concrete Frames Including Joint Shear Deformation," Engineering Structures, Vol. 21, Issue 11, 1999, pp. 971-987. https://doi.org/10.1016/S0141-0296(98)00052-2
  8. Park, Y. J., Reinhorm, A. M., and Kunnath, S. K., "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame Shear wall Structures," Technical Report NCEER-87-0008, National Center for Earthquake Engineering Research, 1987, pp. 13-24.
  9. Oh, J. H. and Kang, S. B., "Three-Parameter Model for Hysteretic Behavior of Reinforced Concrete Beam and Column," Proceedings of the Korea Concrete Institute, Pyeongchang, Korea, Vol. 22, No. 2, 2011, pp. 511-512.
  10. Lee, J. Y. and Kang, S. B., "Three-Parameter Model for Hysteretic Behavior of Reinforced Concrete Beam-Column Joint," Proceedings of the Korea Concrete Institute, Pyeongchang, Korea, Vol. 22, No. 2, 2011, pp. 501-502.
  11. Goel, R. K. and Chopra, A. K., "Period Formulas for Moment-Resisting Frame Buildings," Journal of Structural Engineering, Pyeongchang, Korea, Vol. 123, No. 11, 1997, pp. 1454-1461. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454)
  12. Amanat, K. M. and Hoque, E., "A Rationale for Determining the Natural Period of RC Building Frames Having Infill," Engineering Structures, Vol. 28, 2006, pp. 495-502. https://doi.org/10.1016/j.engstruct.2005.09.004
  13. Satake, N. and Suda, K., "Damping Evaluation Using Full- Scale Data of Buildings in Japan," Journal of Structural Engineering, Vol. 129, No. 4, 2003, pp. 470-477. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(470)
  14. Ministry of Construction & Transportation, Research of Seismic Design Code (I), Earthquake Engineering Society of Korea, Seoul, Korea, 1996, pp. 37-67.
  15. Ministry of Construction & Transportation, Research of Seismic Design Code (II), Earthquake Engineering Society of Korea, Seoul, Korea, 1997, pp. 160-172.
  16. Paz, M., Structural Dynamics, 4th Ed, Chapman & Hall, Norwell Massachusetts USA, 1997, pp. 275-278.